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Abstract:
The need for robust statistical inference is well-documented even in the elementary case of a
regression with a randomly sampled cross section. The usual ordinary least square standard errors
are generally biased under the presence of heteroskedasticity; a phenomenon that seems to be a
rule rather than an exception in applied anaylsis. The article describes several methods to deal with
the biased standard errors grouping them in two categories: sandwich variance estimators and
multi-way clustering. Moreover, the empirical application is included. An analysis of migration in
European countries using the theory of gravity model is done applying several standard errors
correction methods.
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Introduction 

The paper describes general methods that can be combined with panel data in order to 
correct estimations of standard errors where presence of clustering in the data set leads to 
heteroscedasticity and unrobust estimations. The need for robust statistical inference is well-
documented even in the elementary case of a regression with a randomly sampled cross 
section. The usual OLS standard errors are generally biased under the presence of 
heteroskedasticity. The biased standard errors is an often problem that researchers deal with 
in applied empirical analysis. Angrist and Pischke (2008) note that in large samples where 
bias is not likely to be a problem and heteroscedasticity is detected, we typically see standard 
errors increase by about 25 percent when moving from the conventional estimator to the 
estimator with degrees of freedom correction. 

Cameron and Trivedi (2005) presented an example where they generated data with 
conditionally heteroscedastic errors Var(u|x)  =  x  and estimated the model 𝐲 =  𝐉 + 𝐱 + 𝐮 , 
where 𝐉 is a vector of ones,x𝑖 ∼  N(0,25), u𝑖 =  x𝑖ϵ𝑖 withϵ𝑖 ∼  N(0,4). The difference between 
conventional OLSstandard errors and heteroscedasticity-robust ones is much wider than that 

quoted by Angristand Pischke. In the limit, the robust standard errors are√ 3 times larger. 

This demonstrates that a failure to use robust standard errors can lead to quite different 
conclusions in statistical inference. The issue can be even much more pronounced in the case 
ofpanel data. This data typeposes challenges regarding valid statistical inference. In a 
paneldataset, the following issues invalidate the conventional standard errors: 

• heteroscedasticity of the “usual type”, where the variance of random errors is affected 
bythe values of explanatory variables; 

• between-cluster heteroskedasticity, where different clusters exhibit different variance 
ofrandom errors, 

• within-cluster correlation of disturbances (often called intra-class correlation in 
thiscontext) due to the presence of unobserved factors or in theform of serial 
correlation over time. 

The latter issue is especially important and may lead to conventional errors that are severely 
biased; Cameron and Trivedi (2009) show an example with real-life large-sample data where 
therobust standard errors are 2–3 times larger than conventional. 

The remainder of the article is structured as follows. In the next section, we theoretically 
describe how to deal with the adverse effects of clustering on statistical inference in two 
categories: sandwich variance estimators and multi-way clustering. The empirical section 
shortly shows empirical application in the migration analysis using panel data about 8 
European countries between 2011 -2014. 

1 Robust statistical inference 

As a starting point, consider a simple regression where the error term is expected to have 

aclustered structure of the short panel model with unobserved heterogeneityfor individual 𝑖 in 
group (cluster) 𝑔 

𝑦𝑖𝑔 = 𝛽0 + 𝛽1𝑥𝑖𝑔 + 𝑢𝑖𝑔 ,     (1) 

𝑢𝑖𝑔 = 𝑐𝑔 + 𝑣𝑖𝑔 ,     (2) 

where 𝑐𝑔  is a random component specific to class 𝑔 and 𝑣𝑖𝑔  is the left-over disturbance; both 

𝑐𝑔and 𝑣𝑖𝑔are assumed to be iid errors. Moulton (1986) pointed out that when regressors vary 

onlyat the group level, an error structure like above can increase standard errors sharply. 
Angristand Pischke (2008) introduce the Moulton factor that expresses how much we over-
estimateprecision by ignoring intra-class correlation. The Moulton factor is defined as 
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𝑉(𝛽 1)

𝑉𝑂𝐿𝑆 (𝛽 1)
= 1 + (𝑛 − 1)𝜌     (3) 

where 𝑉𝑂𝐿𝑆(𝛽 1)  is the conventional OLS variance formula for the regression slope 

parameter,𝑉 𝛽 1 is the correct sampling variance formula given the error structure (2), 𝜌 is 

called theintra-class correlation coefficient and is defined as 

𝜌 =
𝜎𝑐

2

𝜎𝑐
2+𝜎𝑣

2          (4) 

where 𝜎𝑐
2 is the variance of 𝑐𝑔 and 𝜎𝑣

2 is the variance of 𝑣𝑖𝑔 . The Moulton factor tells us 

thatconventional standard errors become increasingly misleading as 𝑛 and 𝜌 increase. Angrist 
andPischke (2008) explain that the Moulton factor increases with group size because with a 
fixedoverall sample size, larger groups mean fewer clusters. Since observations are assumed 
to beindependent across clusters but not within, there is less independent information in the 
sample. 

A straightforward way to avoid the Moulton factor issue is to apply a regression model 
thatdirectly accounts for the disturbance structure. For (1), one could employ the RE 
estimator, along with its conventional estimator of the coefficients’ variance matrix. However, 
this conventional estimator is only consistent as long as the both disturbancecomponents are 
iid, or at least homoscedastic and non-correlated. 

The usual way to deal with this issue is to use a robust variance matrix estimator, producing 
theso-called cluster-robust standard errors. In addition to protecting the intra-class 
correlation,this estimator is also consistent under the presence of both heteroscedasticity and 
within-clusterserial correlation (in the case of panel data). 

1.1 Sandwich variance estimators 

The theory of robust variance estimators dates back to the seminal papers of Huber 
(1967),Eicker (1967) and White (1980). None of these papers actually deals with the problem 
ofclustering, but all of them point towards a sandwich structure of the variance matrix that 
hasfavourable robustness properties (e.g. against heteroskedasticity). As noted by Williams 
(2000),the adjustment of the Huber-Eicker-White results to the clustering problem had been 
aroundshortly after the seminal papers, but was poorly documented; see Froot (1989) for one 
of theearly references and Wooldridge (2010) for a detailed textbook exposition. 

A well-known result (e.g. White, 1980) regarding the OLS estimator of 𝛽  in the canonical 

linearregression model, 𝐲 =  𝐗𝛃 +  𝐮, states that as the sample sizeNincreases√𝑁(𝜷 𝑂𝐿𝑆 −
𝛃)converges in distribution toN(𝟎, Ω), where 

Ω =  [E(𝐗′𝐗)] −1 Var 𝐗′𝐮  E 𝐗′𝐗  −1.     (5) 

The reason for the term sandwich variance matrix is obvious from (5). The Huber-Eicker-White 
estimator uses straightforward estimators for individual parts of the sandwich,which do not rely 
on the homoscedasticity assumption for their consistency. The Huber-Eicker-White estimator 
itself has several versions, differing in minor small-sample corrections, with thesimplest one 
being 

𝝑 𝐻𝐶𝑂 =  𝑿′𝑿 −1( 𝑢 𝑖
2𝑁

𝑖=1 𝑥𝑖
′𝑥𝑖) 𝑿

′𝑿 −1,       (6) 

where 𝑥𝑖  is the ith row of 𝐗and 𝑢  𝑖  is the ith OLS residual. This version is referred to as 

HC0 in most statistical packages (HC stands for heteroscedasticity corrected); see (Davidson 
and MacKinnon, 2004) for other variants. 

Recall that the conventional estimator of the OLS variance matrix has the form 

𝑽 = 𝜎 2 (𝐗 ′𝐗)−1,where 𝜎 2 is the residual standard error. Thus, the sandwich estimator(6) can 
be rewrittenas 

𝝑 = 𝑽 𝑀𝑽       (7) 
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where𝑽  is the conventional estimator of variance, referred to as the bread of the sandwich,and 

𝑀  is the sandwich’s meat. This turns out to be the overall structure of most 
sandwichestimators. 

The heteroscedasticity-consistent estimator does not correct for typical panel/multilevel 
dataproblem of intraclass correlation due to cluster-specific random errors, nor for the problem 
ofserial correlation of random errors in short panels. For panel and multilevel data, a cluster-
robust varianceestimator (CRVE) is more appropriate. In order to turn the HC0 estimator into a 
cluster-robust one, we merely change the meat to 

𝑴 =  𝑿𝑔 ′𝒖  𝑔𝒖  𝑔 ′𝑿𝑔
𝐺
𝑔=1     (8) 

where G is the number of clusters, 𝑿𝑔  is the usual matrix 𝐗  with the selection of rows 

restrictedto individuals from cluster 𝑔 only, and 𝑢  𝑔 is a vector of OLS residuals for individuals 

from cluster𝑔. The square roots of the diagonal elements of the CRVE matrix are called 
cluster-robuststandard errors. 

The sandwich variance matrices can also be computed for non-linear models estimated by 
maximum likelihood (such as logistic regression). Typically, the form (7) is again used, 

where𝑽 is the usual Hessian-based variance matrix (, and the meat is obtained from the rows 
ofthe X matrix weighted by likelihood scores; for more details, see (Cameron and Trivedi, 
2005). 

1.2 Multi-way clustering and robust inference 

In a multilevel dataset, multiple levels of hierarchy can be present. The natural question 
thenarises, which levels to cluster over. If the levels of hierarchy are nested within one 
another,e.g. regions → schools → classes → students, the general consensus is that one 
should clusterover the topmost level, e.g. regions (Cameron and Miller, 2015). 

The levels of hierarchy do not have to be nested, however. In our empirical analyses, we 
studya gravity model of migration where observations are clustered by the source country and 
thedestination country – two grouping dimensions that intersect. The practical solution that 
issometimes used in empiric applications is to cluster by the intersection of these two 
groupings,i.e. to use the cluster-robust standard errors clustered by source-destination pairs. 
Cameronand Miller (2015) warn that this approach is inadequate since it imposes that 
observations areindependent within the same destination country but in different origin 
countries. It makes senseto assume that all observations that share e.g. a concrete source 
country may be correlated toa certain extent (even if the destination country varies). 

The approach proposed by Cameron and Miller (2015) is to calculate a multi-way cluster-
robustvariance matrix estimate. The method relies on asymptotics that are in the number of 
clusters ofthe dimension with the fewest number of clusters. In statistical packages, the two-
way clusteringrobust variance estimators have not been implemented yet. However, the 
estimates can bemanually calculated from one-way cluster-robust estimates in the following 
manner: 

𝝑𝟐𝒘
 = 𝝑 𝟏 + 𝝑 𝟐 − 𝝑 𝟏𝟐 ,      (9) 

where  𝝑𝟐𝒘
  is the two-way clustering robust variance estimate; 𝝑 𝟏𝝑 𝟐 ) is an estimate of 

thevariance matrix robust to one-way clustering by variable 1 (variable 2), in our case the 

source(destination) country;𝝑 𝟏𝟐  is an estimate of the variance matrix robust to one-way 
clustering byan intersection of variables 1 and 2 (all distinct source-destination pairs). 

It needs to be noted that (9) is not guaranteed to be positive semi-definite. This can be 
thecase mostly when clustering is done over the same groups as the fixed effects. A fix 
recommendedby Cameron and Miller (2015) consists in obtaining an eigedecomposition of the 
matrix andconverting any negative eigenvalues to zero. The procedure is carried out in three 
steps: 
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1. the variance matrix 𝝑𝟐𝒘
  is decomposed into the product of its eigenvectors and 

eigenvalues: 

𝝑𝟐𝒘
  𝜷 = 𝑼𝚲𝐔 ′ ,      (10) 

where 𝐔  contains the eigenvectors of 𝝑𝟐𝒘
 , and 𝚲 =  diag[λ 1 , . . . , λ𝑑  ] contains the 

eigenvaluesof 𝝑𝟐𝒘
  on its diagonal. 

2. Next, 𝚲+is created as 𝚲+ =  diag[λ1
+ , . . . , λ𝑑

+ ]with λ𝑗
+ = max 0, λ𝑗  .  

3. The final estimated variance matrix becomes 

𝝑𝟐𝒘
 +

 𝜷 = 𝑼𝚲+𝐔 ′ ,        (11) 

2 The empirical application in the migration analysis 

The migration analysis of Polonyankina (2017) that uses the random effects model for panel 
data is extended bycorrections of clustered error terms using the introduced in the previous 
chapter. 

The empirical part tests the validity of the gravity model for intra-European immigration since: 
European immigrants originally from other European country than they currently stay create a 
significant portion of foreigners living in EU countries.  

2.1 Motivation  

The gravity model (described e.g. in Anderson, 1979, Metulini, 2013) is in a contradiction with 
the push and pull factors model, the basic one for migration, in the expected impact of the 
economic development of a source country.  

The push and pull factors model (described inBorjas, 2010) assumes negative impact of 
distance on immigration. Immigration is expected to increase with a gap in economic 
development between source and destination countries where: an economic development of a 
source country is expected to have a negative impact on immigration, and an economic 
development of destination country is expected to have a positive impact.The push and pull 
factors model expect that workers are more motivated to move the higher is a gap between 
economic developments of countries.  

The gravity model gives other possibility to look at the intra-European immigration assuming 
that migration works on the same mechanism as trade of goods, expecting a higher share of 
workers between more developed countries. The gravity model supposes that size (in relative 
or absolute terms) has a positive effect on spatial interaction. It's modification for migration 
analysis assumes that the GDP (as a relative size measurement) of both the host and source 
country has a positive impact on migration.The gravity model expects that migration works on 
principles of trade exchanged, assuming to be driven by an economic growth of both, 
destination and source country, and is reduces by their distance.  

One can argue the push and pull factors theory for international migration could not be valid 
for European intra-immigration. The European union is specific since countries are 
geographically close to each other, there are no significant differences in economic 
development and lifestyle, there are no military conflicts plus there is free movement of labor 
and individuals. Intra-European immigration can be driven by different mechanisms than 
immigration from third non-European countries since there are no significant differences in 
human rights, culture, economic development and lifestyle between country of origin and 
destination country, both members of the European union. Moreover, free movement of labor 
and human capital inside the European union reduce some pull factors and costs of 
immigration significantly. Given that the theory of the push and pull factors, assumed to be 
valid for international migration, could not describe migration impacts inside the European 
Union.   
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The goal of the empirical part is to estimate the dependence of migration, within eight 
European countries, on their GDP and the distances to each other in order to examine the 
validity of the gravity model mechanism. 

The empirical application stress standard errors robust estimations since several clusters are 
expected in the data. The panel data model regressions report random effects and correlated 
random effects which are combined with robust standard errors, clustered standard errors by 
country of origin and two-level clustering by country of origin and destination country.  

2.2 Data and methods 

The main data source is the Eurostat web page. The GDP per capita source is the Czech 
Statistical Office database. Countries were chosen based on Eurostat data availability since 
the model requires information about migration flows for all countries. Regression analysis is 
based on panel data for the years 2011-2014 and countries: Belgium, Italy, Hungary, the 
Netherlands, Finland, Sweden, Norway and Switzerland. 

The same regression model as in Polonyankina (2017) is used where 𝑛 = 8, 𝑘 = 1  and 

𝑡 = 2011 − 2014: 
𝑦𝑡 = 𝛼𝐽 + 𝑋𝑖𝑡𝛽𝑜 + 𝑋𝑗𝑡 𝛽𝑑 + 𝐷𝛾 + 𝜀𝑡 ,     (6) 

where:  

 𝑦 is an 𝑛2𝑥 1 vector of logarithms of dependent variables which defined migration 

between countries in year 𝑡, 
 𝐽 is an𝑛2𝑥 1 intercept vector, 

 𝑋𝑖𝑡 is an𝑛2𝑥 1 vector of logarithms of GDP per capita of source countries in year𝑡, 
 𝑋𝑗𝑡 is an𝑛2𝑥 1 vector of logarithms of GDP per capita of host countries in year 𝑡, 

 𝐷 is an𝑛2𝑥 1 vector of logarithms of distances between host and source countries 
(in km), 

 𝜀~𝑁(0, 𝜎2𝐼𝑛) , 
 𝛼, 𝛽𝑑 , 𝛽𝑜 , 𝛾 are parameters to be estimated. 

 
The model works with macroeconomic time series, given that variables of the model are 
tested for stationary applying the Harris-Tzavalis unit-root test. The unit-root test concludes 
that both GDP variables 𝑋𝑖𝑡 and 𝑋𝑗𝑡  do not meet the stacionarity assumption. However, our 

panel data set is short, including 4 years and 8 countries (56 combinations of migration flows), 
given that:  

(i) In general, for short panels non-stacionarity does not have essential impacts.  
(ii) (Results of the unit-root test need to be taken with a discretion. Harris and Tzavalis 

(1999) shows on simulation experiments (table 2a, Harris and Tzavalis, 1999) that 
the test power is low for approximately the same short data set.  

Finally, we decided to include two types of regression sets where 𝑋𝑖𝑡and 𝑋𝑗𝑡  are included once 

in first difference difference transformation and once originally, which is the first extension 
from Polonyankina (2017). 

The panel data estimations are done in Stata using the random effects (RE) and correlated 
random effects models (CRE) to deal with a potential unobserved heterogenity following the 
methodology ofWooldridge (2010), which is the second extension of Polonyankina (2017).  

Since distance is time-invariant and FE is not applicable. We deal with the limitation by 
inclusion of CRE, which allows us to include the time-constant variables and at the same time 
delivers the FE estimates on the time-varying covariates. CRE relaxes the RE assumption by 
assuming a specific form of dependence between the unobserved heterogenityand the 
explanatory variables. Given that RE could be more efficient for some cases and we include 
both, CRE and RE, in the presentation. 
 
For both regression sets we calculate 3 types of standard errors (the third extension from 
Polonynakina, 2017):   

23 September 2019, IISES International Academic Conference, Barcelona ISBN 978-80-87927-91-5, IISES

222https://iises.net/proceedings/international-academic-conference-barcelona/front-page



 
 

6 
 

 
1. The Huber-Eicker-White estimator where standard errors corrected for 

heteroscedasticity, the basic commonly used correction;   
2. The clustered (Huber-White-sandwich) errors to correct errors for dependencies within 

a region;   
3. It is reasonable to assume that all observations that share e.g. a concrete source 

country may be correlated to certain extent (even if the destination country varies). In 
particular, we use a variance estimator for the random-effects estimator that is robust 
to two-way clustering, i.e. clustering across (i) the source country and (ii) the 
destination country.  

The corrected two-way clustering variance calculation is not incorporated in STATA and was 
programmed manually including correction for non-positive semi-definite variance matrix, 
applying the procedure described in section Multi-way clustering and robust inference.  

2.3 Results 

The results on table 1 present the estimation of random effects panel data model (RE) and 
correlated random effects models (CRE) with GDP in the first difference. Table 2 presents the 
estimation of random effects panel data model (RE) and correlated random effects models 
(CRE) with GDP without the first difference correction and with time dummies.  
 
During our analysis we estimated also the first regression set (table 1) with time dummies, 
with no impact on the conclusions. The three types of standard errors are presented: 

 Robust SE robust standard errors;  

 Clustered SE clustered standard errors by a destination country;   

 Two-way SE the two-way cluster-standard errors dealing with possible two-way 
clustering by a destination country and a source country.  

The conservative p-values (p-value) are used for the final significance evaluation following the 
conservative approach of Angrist and Pischke (2008), where the p-value used for our result 
evaluation is based on the largest of the three calculated standard errors.   
 
The estimated parameters show that distance has a negative and statistically significant 
impact on migration, which is in line with both the push and pull theory and the gravity model.  
 
For GDP of a destination country a positive impact was estimated, not significant for models 
on table 1 and significant for models on table 2. The positive impact is expected by both the 
push and pull theory and the gravity model.  
 
 
 
 
 

Table 1: Regression results set 1 

Source: Own calculation is Stata. 

explanatory variables RE CRE 

GDP source country (log-diff.) -0.038 -0.042 

p-value 0.531 0.690 

(Robust SE) (0.061) (0.061) 

(Clustered SE) (0.057) (0.011) 

(Two-way SE) (0.057) (0.105) 

GDP destination country (log-diff.) 1.575 1.595 

p-value 0.354 0.361 

(Robust SE) (0.873) (0.888) 
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(Clustered SE) (1.578) (1.065) 

(Two-way SE) (1.695) (1.743) 

Distance (log) -0.864*** -0.861*** 

p-value 0.003 0.005 

(Robust SE) (0.293) (0.304) 

(Clustered SE) (0.173) (0.275) 

(Two-way SE) (0.131) (0.133) 

Year dummies no no 

Footnotes – 9 point, ARIAL 

 

Table 2: Regression results set 2 

Source: Own calculation is Stata. 

explanatory variables RE CRE 

GDP source country (log)  -0.091   -0.067 

p-value 0.195 0.516 

(Robust SE) (0.060) (0.056) 

(Clustered SE) (0.054) (0.047) 

(Two-way SE) (0.070) (0.103) 

GDP destination country (log) 1.042***   2.543*** 

p-value 0.001 0.002 

(Robust SE) (0.190) (0.760) 

(Clustered SE)  (0.164) (0.729) 

(Two-way SE) (0.299) (0.710) 

Distance (log)   -0.849***   -0.870*** 

p-value 0.002 0.002 

(Robust SE) (0.268) (0.286) 

(Clustered SE) (0.241) (0.262) 

(Two-way SE) (0.132) (0.195) 

Year dummies yes yes 

Footnotes – 9 point, ARIAL 

 
The impact of the GDP of a source country on migration is estimated negative, but also not 
statistically significant. The gravity model assumptions do not fit the migration analysis results 
since the gravity model expects a positive and statistical significant impact. The analysis did 
not find an evidence of non-rejection of the hypothesis about the gravity model validation for 
intra-European immigration. 
 
The results tend to support the push and pull factors theory regarding the negative impact 
estimated, however estimates are not significant. This can be caused by the choice of the 
European countries for the analysis,where the countries with stable and similarly developed 
economies are included. For these countries the migration push factors might not as strong as 
in the case of mostly economically weaker countries outside of the Europe.   
 
It should be noted that the practical application discovered difficulties to meet data 
requirements the gravity model testing: Information about immigrant nationality is necessary in 
a data set, which is not listed for all countries and years on the Eurostat web page. 
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Conclusion 

The paper summarised the methods usually used in order to correct estimations of standard 

errors where presence of clustering in the data set leads to heteroscedasticity and unrobust 

estimations. The need for robust statistical inference is well-documented even in the 

elementary case of a regression with a randomly sampled cross section data where the usual 

ordinary least square standard errors are generally biased under the presence of 

heteroskedasticity. We introduce several basic sandwich variance estimators and a multi-way 

cluster-robust variance matrix estimate. 

 

In empirical application the methods are combined with panel data random effects and 

correlated random effects models. The validity of the gravity model for the intra-European 

immigration wasanalyzedfor eight European countries between 2011 and 2014.  

 

The expected negative impact of distance on migration was estimated to be significant in all 

models.As mentioned before, the gravity model assumes a positive effect of the GDP of the 

source country. However, the push and pull theory assumes the opposite effect, 

i.e., emigration is higher in countries with lower GDP since individuals expect that immigration 

to economically stronger countries will improve their economic situation. The analysis did not 

find any evidence of a positive impact of the GDP of the source country, as is expected by the 

gravity model, but rather, a negative, but not significant impact was estimated.The empirical 

analysis did not confirm the validity of the gravity model. The estimated parameters appear to 

corroborate the validity of the push and pull factors theory.  

 

The empirical analysis suffered from the lack of data since information about labor force 

interactions between the countries is needed for the gravity model.  
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