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Abstract:
Multiple linear regression model is a widely used statistical technique in social and life sciences.
Ordinary Least Squares (OLS) estimator is the Best Linear Unbiased Estimator (BLUE) for the
unknown population parameters of this model. Unfortunately, sometimes two or more of the
regressors may be moderately or highly correlated causing multicollinearity problem. Various biased
estimators are proposed to refine the ill-conditioning of X’X matrix and shrink the variance under the
multicollinearity. The most popular of them is Ridge estimator. But it may worsen the fit when
solving the ill-conditioning problem. Two-Parameter Ridge (2PR) and Liu Type (LT) estimators are
proposed to overcome the fitting degeneration of Ridge estimator by using a tuning parameter. In
this study, holding the parameter refining the ill-conditioning of X’X matrix fixed, the success of the
tuning parameters of these estimators is investigated. Minimizers of Predicted Sum of Squares
(PRESS) and Generalized Cross Validation (GCV) statistics are used as estimates of tuning
parameters. Optimum parameter estimates are compared via their Scalar Mean Squared Errors
(SMSE). It is observed that the SMSEs of estimates obtained by LT and 2PR estimators decreases
when estimates of parameter refining the ill-conditioning of X’X matrix increases, and in all cases
estimates obtained by the 2PR estimator are much more efficient than estimates obtained by LT and
OLS estimators.
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1 Introduction 

Multiple linear regression model is a widely used statistical technique in social and life 

sciences. OLS estimator is the BLUE for the unknown population parameters of this 

model. Unfortunately, in the presence of multicollinearity, ill-conditioning of X’X matrix 

enlarges the variance of parameters estimates of OLS and makes them unstable and 

unreliable. Various biased estimators are proposed to overcome this problem. The most 

popular is the Ridge estimator proposed by Hoerl and Kennard (1970). But this estimator 

sometimes worsens the fit when solving the ill-conditioning problem. LT (Liu, 2003) and 

2PR (Lipovetsky & Conklin, 2005) estimators are proposed to overcome the fitting 

degeneration of Ridge estimator by using a tuning parameter. Liu (2003) and Lipovetsky 

(2006) suggest choosing biasing parameter k so that to reduce the ill-conditioning 

problem to the desired level, and then to evaluate the tuning parameter by optimizing a 

criterion of optimum fit.  

In this study, following suggestions mentioned above, holding the parameter refining the 

ill-conditioning of X’X matrix fixed, the success of the tuning parameters of these 

estimators is investigated. Most of the studies use the minimizer of Mean Squared Error 

(MSE) as the biasing parameter, replacing the unknown population parameters by their 

unbiased estimates. But in the presence of the multicollinearity, these estimates are very 

unstable and may be far from the population parameters. To avoid this inconvenience, 

biasing parameter which solves the ill-conditioning of X’X matrix is estimated as to reduce 

the conditional index (CI), and minimizers of PRESS and GCV statistics are used as 

estimates of tuning parameters.  

In the literature, there are numerous theoretical studies comparing estimators under 

various criteria. Unfortunately, in theoretical studies comparisons are for any values of 

biasing parameters, not for optimal ones. For example, see Farebrother (1976), Draper 

and Van Nostrand (1979), Toker and Kaçıranlar (2013). In order to compare the best 

estimates (under given criteria), Monte Carlo experiments may be preferred to be used. A 

simulation study comparing prediction performances of LT and 2PR is performed in 

Özbey (2013) and some real data analyses are performed in Özbey (2012) selecting k 

such that to reduce CI to 10, as it suggested and applied in Liu (2003). It is established 

that predictions obtained using 2PR estimator are better than LT estimator.  

In this study, in order to compare the best estimates (under given criteria), Monte Carlo 

experiments are preferred to be used. 
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2 Estimators and Statistics Used 

2.1. Estimators 

Ridge estimator proposed as an alternative to OLS in the presence of multicollinearity is 

defined as: 
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Here k is biasing parameter used to refine the ill-conditioning of X’X matrix. 

LT estimator, which is proposed to improve the performance of the Ridge estimator, is 

defined as: 
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Here d is the tuning parameter. 

2PR estimator, which is another estimator proposed to improve the performance of the 

Ridge estimator, is defined as: 
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Here q is the tuning parameter.  

2.2.  Statistics 

CI of (X’X+kI) matrix is defined as: 
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Here 
max  and min are the largest eigenvalue and the lowest eigenvalue of X’X matrix, 

correspondingly. 

PRESS statistics proposed by Allen (1971) is defined as: 
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By definition, PRESS statistics of LT estimator is: 
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and PRESS statistics of the 2PR estimator is: 
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GCV statistics proposed in Golub et al. (1979) is defined as: 
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and 
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for LT and 2PR estimators correspondingly. 

 

3 Monte Carlo Simulations  

3.1. Simulations Setup 

In the experiment, regressors are simulated as in McDonald and Galarneau (1975), Kibria 

(2003), Liu (2004) and Güler and Kaçıranlar (2009): 
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ijz s are independent standard normal pseudo-random numbers. In this way, the 

regressors are simulated as to be collinear. The square root of rho is selected as 0.9999 

to assure k to be positive. The dependent variable is simulated as: 

.y X    (12) 

  is the normalized eigenvector corresponding to the largest eigenvalue of the X’X 

matrix, see Newhouse and Oman (1971). (0,1)N  is a vector consists of pseudo-

random numbers. Seed is chosen as 45324762. The number of regressors simulated is 

3, and the number of observations is 50. The vector of parameters to be estimated is

 0.5761 0.5774 0.5786   . 

SMSE of each estimator is evaluated as: 
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where ˆ
i  is the estimated value of   at the ith replication. MCR is the number of Monte 

Carlo replications. 

Three different values of k are evaluated as to reduce the CI to 10, 5, and 3. Replicating 

simulations and estimations 100, 500, 1000, and 10,000 times, and by using minimizers 

of both PRESS and GCV statistics as estimates of tuning parameters, the following 

results are obtained. 

 

3.1 Simulations Results 

Table 1: Results for k=1.4705 by minimizing PRESS and GCV statistics. 

 0.5761 0.5774 0.5786 PRESS SMSE( β̂ ) 0.5761 0.5774 0.5786 GCV SMSE( β̂ ) 

MCR=100 

OLS  1.6264 -1.5082 -0.1046 5251 20404   1.6264 -1.5082 -0.1046 4905.6 20404  

LT 1.0707  -0.9902 -0.0682 4592.1 81700 0.9798 -0.9055 -0.0622 90.2993 83507 

2PR -0.0246 0.0098 -0.0018 4630.7 395.00 -0.0160 0.0064 -0.0012 90.1832 387.43 

MCR=500 

OLS -0.0597 -0.0708 0.1314 5230.1 19692 -0.0597 -0.0708 0.1314 4900.2 19692 

LT 0.1067   0.1268 -0.2315 4587.2 75910 0.1360 0.1616 -0.2954 90.7641 73486 

2PR 0.0002 -0.0001 -0.0044 4635.1 431.47 0.0003 -0.0002 -0.0052 90.2657 449.7799 

MCR=1,000 

OLS 0.0171 0.0850 -0.1018 5226.9 20623 0.0171 0.0850 -0.1018 4894.8 20623 

LT -0.0006    -0.0038 0.0046 4618.3 72367 -0.0038 -0.0196 0.0234 91.5840 67285 
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2PR -0.0215 -0.0506 0.0606 4652.8 486.30 -0.0215 -0.0506 0.0606 90.8153 526.1356 

MCR=10,000 

OLS -0.0035 0.0085 -0.0047 5228.7 20986 -0.0035 0.0085 -0.0047 104.1356 20986 

LT 0.0039 -0.0088 0.0052 4637.2 70622 0.0045 -0.0101 0.0059 91.8418 67503 

2PR 0.00008 0.00015 0.00008 4675.4 440.89 0.00008 0.00014 0.00008 91.4781 471.3824 

 

Table 2: Results for k=6.092 by minimizing PRESS and GCV statistics. 

 0.5761 0.5774 0.5786 PRESS SMSE( β̂ ) 0.5761 0.5774 0.5786 GCV SMSE( β̂ ) 

MCR=100 

OLS  1.6264 -1.5082 -0.1046 5251 20404   1.6264 -1.5082 -0.1046 4905.6 20404  

LT 1.0623  -0.9828  -0.0673  4609.1  50901  0.9700 -0.8970 -0.0612 90.7430 49002 

2PR -0.0105  -0.0017  -0.0047  4633.1  28.041  -0.0068 -0.0011 -0.0031 90.1902 26.8209 

MCR=500 

OLS -0.0597 -0.0708 0.1314 5230.1 19692 -0.0597 -0.0708 0.1314 4900.2 19692 

LT 0.1097    0.1300 -0.2379 4604.8 47336 0.1389 0.1647 -0.3016 91.1932 44566 

2PR -0.0010 -0.0011 -0.0022 4635.9 29.654 -0.0012 -0.0013 -0.0026 90.2695 30.4148 

MCR=1,000 

OLS 0.0171 0.0850 -0.1018 5226.9 20623 0.0171 0.0850 -0.1018 4894.8 20623 

LT -0.0013 -0.0069 0.0083 4634.6 43540 -0.0042 -0.0211 0.0253 91.9489 40684 

2PR -0.0079 -0.0150 0.0120 4652 35.176 -0.0079 -0.0150 0.0120 90.8109 35.1206 

MCR=10,000 

OLS -0.035 0.085 -0.047 5228.7 20986 -0.035 0.085 -0.047 104.136 20986 

LT 0.0039 -0.0087 0.0051 4653.2 41305 0.0045 -0.0102 0.0060 92.2008 39566 

2PR 0.0001 0.0001 0.0001 4674.4 31.7175 0.0001 0.0001 0.0001 91.4703 31.8284 

 

Results given in Table 1 are obtained by evaluating k as to reduce the CI to 10 (i.e., 

k=1.4705). Under these conditions, compared to OLS estimator, both LT and 2PR 

estimators reduce PRESS and GCV statistics but the SMSEs of LT estimator are even 3-

4 times greater than SMSEs of OLS estimator. Generally, both LT and 2PR estimators 

perform better when tuning parameters estimates are minimizers of PRESS statistics. 

In Table 2 results are given obtained by selecting k=6.092 (i.e., reducing CI to 5). It is 

observed that, though PRESS and GCV statistics do not change very much and though 

SMSEs of the LT estimator are still higher than the SMSEs of the OLS estimator, 

reducing CI from 10 to 5 contributes to the improvement of SMSEs of both LT and 2PR 

estimators.  

Take into account the improvement of SMSEs; CI is lowered to 3 in the hope of reducing 

SMSEs of LT estimator below SMSEs of OLS estimator. Results are given in Table 3. 
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Table 3: Results for k=18.2927 by minimizing PRESS and GCV statistics. 

 0.5761 0.5774 0.5786 PRESS SMSE( β̂ ) 0.5761 0.5774 0.5786 GCV SMSE( β̂ ) 

MCR=100 

OLS  1.6264 -1.5082 -0.1046 5251 20404   1.6264 -1.5082 -0.1046 4905.6 20404  

LT 1.0429 -0.9650 -0.0660 4670.9 23230 0.9478 -0.8765 -0.0597 92.3700 24467 

2PR -0.0074 -0.0042 -0.0053 4636.3 7.1435 -0.0048 -0.0028 -0.0035 90.2404 6.4939 

MCR=500 

OLS -0.0597 -0.0708 0.1314 5230.1 19692 -0.0597 -0.0708 0.1314 4900.2 19692 

LT 0.1156 0.1370 -0.2510 4660.7 24381 0.1451 0.1719 -0.3152 92.6543 23626 

2PR -0.0013 -0.0013 -0.0017 4638.8 6.8537 -0.0015 -0.0016 -0.0020 90.3174 6.7972 

MCR=1,000 

OLS 0.0171 0.0850 -0.1018 5226.9 20623 0.0171 0.0850 -0.1018 4894.8 20623 

LT -0.0028 -0.0139 0.0168 4681.9 24038 -0.0049 -0.0248 0.0298 93.1760 23064 

2PR -0.0048 -0.0071 0.0018 4654.0 7.6473 -0.0048 -0.0071 0.0018 90.8497 7.4613 

MCR=10,000 

OLS -0.035 0.085 -0.047 5228.7 20986 -0.035 0.085 -0.047 104.136 20986 

LT 0.0035 -0.0078 0.0046 4700.4 22391 0.0042 -0.0096 0.0056 93.4667 21593 

2PR 0.00010 0.00011 0.00010 4676.1 7.2283 0.0001 0.0001 0.0001 91.5017 7.0399 

Results in Table 3 are for k=18.2927. Again, it is observed that PRESS and GCV 

statistics do not change very much, and SMSEs of the LT estimator are still higher than 

the SMSEs of the OLS estimator; but reducing CI to 3 improves SMSEs of both 

estimators, and also approximates SMSEs of LT estimator to SMSEs of OLS estimator.  

 

4 Conclusion 

In the presence of multicollinearity, ill-conditioning of X’X matrix enlarges the variance of 

parameters estimates of OLS and makes them unstable and unreliable. The most popular 

biased estimator proposed to overcome this problem is the Ridge estimator. But this 

estimator sometimes may worsen the fit when solving the ill-conditioning problem. LT and 

2PR estimators are proposed to overcome the fitting degeneration of Ridge estimator by 

using a tuning parameter. 

In this study, to compare the best estimates under given criteria, Monte Carlo 

experiments are performed. Following Liu (2003), biasing parameter k is chosen as to 

reduce the CI to the desired level. After that, following Liu (2003) and Lipovetsky (2006), 

the tuning parameters of these estimators are evaluated for fixed values of k. Tuning 

parameters estimates are selected as minimizers of PRESS and GCV statistics.  
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Three different values of k are evaluated as to reduce CI to 10, 5, and 3. Simulations and 

estimations are replicated 100, 500, 1000, and 10,000 times. Following results are 

obtained: 

1) Reducing CI improves SMSEs of parameter estimates of both LT and 2PR 

estimators. 

2) Under given experiments above LT estimator fails to provide lower SMSEs than 

the OLS estimator. 

3) Parameter estimates obtained by LT and 2PR estimators tend to zero while the 

number of replications increases. 

4) 2PR estimator generates estimates with lower SMSEs than LT and OLS 

estimators. 
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