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Abstract:

Multiple linear regression model is a widely used statistical technique in social and life sciences.
Ordinary Least Squares (OLS) estimator is the Best Linear Unbiased Estimator (BLUE) for the
unknown population parameters of this model. Unfortunately, sometimes two or more of the
regressors may be moderately or highly correlated causing multicollinearity problem. Various biased
estimators are proposed to refine the ill-conditioning of X'X matrix and shrink the variance under the
multicollinearity. The most popular of them is Ridge estimator. But it may worsen the fit when
solving the ill-conditioning problem. Two-Parameter Ridge (2PR) and Liu Type (LT) estimators are
proposed to overcome the fitting degeneration of Ridge estimator by using a tuning parameter. In
this study, holding the parameter refining the ill-conditioning of X'X matrix fixed, the success of the
tuning parameters of these estimators is investigated. Minimizers of Predicted Sum of Squares
(PRESS) and Generalized Cross Validation (GCV) statistics are used as estimates of tuning
parameters. Optimum parameter estimates are compared via their Scalar Mean Squared Errors
(SMSE). It is observed that the SMSEs of estimates obtained by LT and 2PR estimators decreases
when estimates of parameter refining the ill-conditioning of X'X matrix increases, and in all cases
estimates obtained by the 2PR estimator are much more efficient than estimates obtained by LT and
OLS estimators.
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1 Introduction

Multiple linear regression model is a widely used statistical technique in social and life
sciences. OLS estimator is the BLUE for the unknown population parameters of this
model. Unfortunately, in the presence of multicollinearity, ill-conditioning of X’X matrix
enlarges the variance of parameters estimates of OLS and makes them unstable and
unreliable. Various biased estimators are proposed to overcome this problem. The most
popular is the Ridge estimator proposed by Hoerl and Kennard (1970). But this estimator
sometimes worsens the fit when solving the ill-conditioning problem. LT (Liu, 2003) and
2PR (Lipovetsky & Conklin, 2005) estimators are proposed to overcome the fitting
degeneration of Ridge estimator by using a tuning parameter. Liu (2003) and Lipovetsky
(2006) suggest choosing biasing parameter k so that to reduce the ill-conditioning
problem to the desired level, and then to evaluate the tuning parameter by optimizing a
criterion of optimum fit.

In this study, following suggestions mentioned above, holding the parameter refining the
ill-conditioning of X’X matrix fixed, the success of the tuning parameters of these
estimators is investigated. Most of the studies use the minimizer of Mean Squared Error
(MSE) as the biasing parameter, replacing the unknown population parameters by their
unbiased estimates. But in the presence of the multicollinearity, these estimates are very
unstable and may be far from the population parameters. To avoid this inconvenience,
biasing parameter which solves the ill-conditioning of X’X matrix is estimated as to reduce
the conditional index (Cl), and minimizers of PRESS and GCV statistics are used as
estimates of tuning parameters.

In the literature, there are numerous theoretical studies comparing estimators under
various criteria. Unfortunately, in theoretical studies comparisons are for any values of
biasing parameters, not for optimal ones. For example, see Farebrother (1976), Draper
and Van Nostrand (1979), Toker and Kagiranlar (2013). In order to compare the best
estimates (under given criteria), Monte Carlo experiments may be preferred to be used. A
simulation study comparing prediction performances of LT and 2PR is performed in
Ozbey (2013) and some real data analyses are performed in Ozbey (2012) selecting k
such that to reduce CI to 10, as it suggested and applied in Liu (2003). It is established
that predictions obtained using 2PR estimator are better than LT estimator.

In this study, in order to compare the best estimates (under given criteria), Monte Carlo
experiments are preferred to be used.
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2 Estimators and Statistics Used
2.1. Estimators

Ridge estimator proposed as an alternative to OLS in the presence of multicollinearity is
defined as:

B = (XX +k)XY )
k>0.
Here k is biasing parameter used to refine the ill-conditioning of X’X matrix.

LT estimator, which is proposed to improve the performance of the Ridge estimator, is
defined as:

ﬁLT =(X'X +k|)_l(x Iy_dBOLs)

= (X" X4k (XX =dl) Sy 2)
k > 0.
Here d is the tuning parameter.

2PR estimator, which is another estimator proposed to improve the performance of the
Ridge estimator, is defined as:

Poor = A(XX +KI)*XY 3)
k>0.
Here q is the tuning parameter.

2.2.  Statistics
ClI of (X’X+kl) matrix is defined as:

Cl = [fuatk (4)
Ain +K

Here 4. and A are the largest eigenvalue and the lowest eigenvalue of X'X matrix,
correspondingly.

PRESS statistics proposed by Allen (1971) is defined as:

PRESS = Z[ﬁ} . ()

i=1
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By definition, PRESS statistics of LT estimator is:

PRESS,, =

3 Y =X (XX +KD XX —dI)XX) XYY (6)
I-x/ (XX +KD)(XX =dD)(XX) "%, )

i=1

and PRESS statistics of the 2PR estimator is:

2
0y — g (XX +KI) XY
PRESS, .. = ! ! . 7

2PR ;[ 1—x/ (XX +kI)?x, %

GCV statistics proposed in Golub et al. (1979) is defined as:

GCV =M (8)
(Tr(I—H))

which turns to:

GCV,; =

nzn:(y—X(XX +KD) (XX —d)(X X)X )2 9)

(i(l—xi(xx KD EXX —d(XX) X))

and

nzn:(y—qX(XX +kD™TX§)?
GCVp =—5 (10)

n

QA= (XX +k1) X))’

for LT and 2PR estimators correspondingly.

3 Monte Carlo Simulations
3.1. Simulations Setup

In the experiment, regressors are simulated as in McDonald and Galarneau (1975), Kibria
(2003), Liu (2004) and Guler and Kagiranlar (2009):

X :(1_,0)}/2 Z; +\/;Zim+l’ (11)
i=12,...,n, j=12,...m
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z;s are independent standard normal pseudo-random numbers. In this way, the
regressors are simulated as to be collinear. The square root of rho is selected as 0.9999
to assure k to be positive. The dependent variable is simulated as:
y=Xp+e. (12)
S is the normalized eigenvector corresponding to the largest eigenvalue of the XX
matrix, see Newhouse and Oman (1971). <[] N(0,1) is a vector consists of pseudo-
random numbers. Seed is chosen as 45324762. The number of regressors simulated is

3, and the number of observations is 50. The vector of parameters to be estimated is
p'=[0.5761 05774 0.5786].

SMSE of each estimator is evaluated as:

l MCR

MCR Zl: (B, =BY (B =P,

where 4, is the estimated value of g at the ith replication. MCR is the number of Monte
Carlo replications.

SMSE(f3) = (13)

Three different values of k are evaluated as to reduce the ClI to 10, 5, and 3. Replicating
simulations and estimations 100, 500, 1000, and 10,000 times, and by using minimizers
of both PRESS and GCV statistics as estimates of tuning parameters, the following
results are obtained.

3.1

Simulations Results

Table 1: Results for k=1.4705 by minimizing PRESS and GCV statistics.

0.5761 [ 0.5774 | 0.5786 [PRESS|SMSE( 3)[ 0.5761]0.5774[0.5786 | GCV [SMSE(})
MCR=100

OLS| 1.6264] -1.5082[ -0.1046] 5251] 20404| 1.6264[-1.5082]-0.1046] 4905.6] 20404

LT | 1.0707| -0.9902| -0.0682| 4592.1] 81700| 0.9798[-0.9055|-0.0622| 90.2993] 83507

2PR| -0.0246| 0.0098| -0.0018| 4630.7] 395.00[-0.0160| 0.0064|-0.0012| 90.1832] 387.43
MCR=500

OLS[ -0.0597] -0.0708] 0.1314] 5230.1] 19692[-0.0597[-0.0708[ 0.1314] 4900.2] 19692

LT | 0.1067| 0.1268| -0.2315| 4587.2] 75910| 0.1360| 0.1616|-0.2954| 90.7641| 73486

2PR| 0.0002| -0.0001| -0.0044| 4635.1] 431.47| 0.0003|-0.0002|-0.0052| 90.2657| 449.7799
MCR=1,000

OLS| 0.0171] 0.0850] -0.1018| 5226.9] 20623] 0.0171] 0.0850]-0.1018] 4894.8] 20623

LT |-0.0006 -0.0038| 0.0046| 4618.3] 72367|-0.0038|-0.0196| 0.0234| 91.5840| 67285
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2PR| -0.0215| -0.0506| 0.0606| 4652.8)

486.30] -0.0215| -0.0506/ 0.0606| 90.8153| 526.1356

MCR=10,000
OLS| -0.0035| 0.0085| -0.0047| 5228.7 20986/ -0.0035| 0.0085|-0.0047|104.1356| 20986
LT | 0.0039| -0.0088| 0.0052| 4637.2 70622 0.0045|-0.0101| 0.0059| 91.8418, 67503
2PR|0.00008/0.00015/0.00008| 4675.4| 440.89|0.00008|0.00014/0.00008| 91.4781|471.3824
Table 2: Results for k=6.092 by minimizing PRESS and GCV statistics.
0.5761 | 0.5774 | 0.5786 |PRESS|SMSE( )| 0.5761 | 0.5774 | 0.5786 | GCV |SMSE($)
MCR=100
OLS| 1.6264|-1.5082|-0.1046| 5251 20404| 1.6264| -1.5082| -0.1046| 4905.6 20404
LT | 1.0623|-0.9828|-0.0673| 4609.1 50901| 0.9700| -0.8970| -0.0612| 90.7430{ 49002
2PR|-0.0105|-0.0017|-0.0047| 4633.1| 28.041| -0.0068| -0.0011| -0.0031| 90.1902| 26.8209
MCR=500
OLS|-0.0597|-0.0708| 0.1314| 5230.1 19692 -0.0597| -0.0708| 0.1314| 4900.2 19692
LT | 0.1097| 0.1300|-0.2379| 4604.8| 47336| 0.1389| 0.1647|-0.3016| 91.1932 44566
2PR|-0.0010{-0.0011|-0.0022| 4635.9| 29.654| -0.0012| -0.0013| -0.0026| 90.2695| 30.4148
MCR=1,000
OLS| 0.0171| 0.0850|-0.1018| 5226.9 20623| 0.0171| 0.0850| -0.1018| 4894.8 20623
LT |-0.0013|-0.0069| 0.0083| 4634.6/ 43540| -0.0042| -0.0211| 0.0253| 91.9489 40684
2PR|-0.0079|-0.0150| 0.0120| 4652| 35.176|-0.0079| -0.0150| 0.0120| 90.8109| 35.1206
MCR=10,000
OLS| -0.035] 0.085| -0.047| 5228.7 20986 -0.035| 0.085| -0.047| 104.136 20986
LT | 0.0039|-0.0087| 0.0051| 4653.2| 41305| 0.0045| -0.0102| 0.0060| 92.2008 39566
2PR| 0.0001| 0.0001| 0.0001| 4674.4| 31.7175| 0.0001| 0.0001| 0.0001| 91.4703| 31.8284

Results given in Table 1 are obtained by evaluating k as to reduce the CI to 10 (i.e.,
k=1.4705). Under these conditions, compared to OLS estimator, both LT and 2PR
estimators reduce PRESS and GCV statistics but the SMSEs of LT estimator are even 3-
4 times greater than SMSEs of OLS estimator. Generally, both LT and 2PR estimators
perform better when tuning parameters estimates are minimizers of PRESS statistics.

In Table 2 results are given obtained by selecting k=6.092 (i.e., reducing CI to 5). It is
observed that, though PRESS and GCV statistics do not change very much and though
SMSEs of the LT estimator are still higher than the SMSEs of the OLS estimator,
reducing CI from 10 to 5 contributes to the improvement of SMSEs of both LT and 2PR
estimators.

Take into account the improvement of SMSEs; Cl is lowered to 3 in the hope of reducing
SMSEs of LT estimator below SMSEs of OLS estimator. Results are given in Table 3.
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Table 3: Results for k=18.2927 by minimizing PRESS and GCV statistics.

0.5761[0.5774 | 0.5786 [PRESS|SMSE( )] 0.5761]0.5774[0.5786 | GCV [SMSE( )

MCR=100

OLS| 1.6264|-1.5082| -0.1046, 5251 20404| 1.6264|-1.5082| -0.1046| 4905.6 20404

LT | 1.0429|-0.9650| -0.0660| 4670.9 23230| 0.9478| -0.8765| -0.0597| 92.3700 24467

2PR| -0.0074| -0.0042| -0.0053| 4636.3| 7.1435| -0.0048| -0.0028| -0.0035| 90.2404| 6.4939

MCR=500

OLS| -0.0597| -0.0708| 0.1314| 5230.1 19692| -0.0597| -0.0708| 0.1314| 4900.2 19692

LT | 0.1156| 0.1370|-0.2510| 4660.7 24381 0.1451] 0.1719|-0.3152| 92.6543 23626

2PR| -0.0013| -0.0013| -0.0017| 4638.8| 6.8537|-0.0015| -0.0016| -0.0020, 90.3174| 6.7972

MCR=1,000

OLS| 0.0171| 0.0850| -0.1018| 5226.9 20623| 0.0171 0.0850|-0.1018| 4894.8 20623

LT |-0.0028|-0.0139| 0.0168| 4681.9 24038| -0.0049| -0.0248| 0.0298| 93.1760] 23064

2PR| -0.0048| -0.0071| 0.0018| 4654.0f 7.6473|-0.0048| -0.0071| 0.0018| 90.8497, 7.4613

MCR=10,000

OLS| -0.035] 0.085| -0.047| 5228.7 20986 -0.035] 0.085| -0.047| 104.136] 20986

LT | 0.0035|-0.0078| 0.0046| 4700.4) 22391 0.0042| -0.0096| 0.0056| 93.4667 21593

2PR|0.00010/0.00011/0.00010| 4676.1) 7.2283| 0.0001| 0.0001| 0.0001| 91.5017| 7.0399

Results in Table 3 are for k=18.2927. Again, it is observed that PRESS and GCV
statistics do not change very much, and SMSEs of the LT estimator are still higher than
the SMSEs of the OLS estimator; but reducing Cl to 3 improves SMSEs of both
estimators, and also approximates SMSEs of LT estimator to SMSEs of OLS estimator.

4 Conclusion

In the presence of multicollinearity, ill-conditioning of X’X matrix enlarges the variance of
parameters estimates of OLS and makes them unstable and unreliable. The most popular
biased estimator proposed to overcome this problem is the Ridge estimator. But this
estimator sometimes may worsen the fit when solving the ill-conditioning problem. LT and
2PR estimators are proposed to overcome the fitting degeneration of Ridge estimator by
using a tuning parameter.

In this study, to compare the best estimates under given criteria, Monte Carlo
experiments are performed. Following Liu (2003), biasing parameter k is chosen as to
reduce the CI to the desired level. After that, following Liu (2003) and Lipovetsky (2006),
the tuning parameters of these estimators are evaluated for fixed values of k. Tuning
parameters estimates are selected as minimizers of PRESS and GCV statistics.
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Three different values of k are evaluated as to reduce Cl to 10, 5, and 3. Simulations and
estimations are replicated 100, 500, 1000, and 10,000 times. Following results are
obtained:

1) Reducing CI improves SMSEs of parameter estimates of both LT and 2PR
estimators.

2) Under given experiments above LT estimator fails to provide lower SMSEs than
the OLS estimator.

3) Parameter estimates obtained by LT and 2PR estimators tend to zero while the
number of replications increases.

4) 2PR estimator generates estimates with lower SMSEs than LT and OLS
estimators.
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