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Abstract:
Response Surface Methodology (RSM) is a major research field of quality management, which
studies the relationship between a response (quality characteristic) and a number of input variables.
In real-world RSM application problems, it is quite common that several responses are of interest. In
this case, determination of optimum conditions on the input variables would require simultaneous
consideration of all the responses. This is called a Multiple Response Surface (MRS) problem. One of
the most important issues in MRS Optimization is how to obtain a satisfactory “compromise” solution
considering a Decision Maker (DM)’s preference information on the tradeoffs among multiple
responses. A promising alternative to incorporate the DM’s preference information well into the
problem is the posterior preference articulation approach, which first generates all (or most) of the
nondominated solutions and then makes the DM select the best one from the set of nondominated
solutions a posteriori. This paper proposes a new posterior method to MRSO, which does not
generate all the nondominated solutions before the selection stage, unlike other posterior methods
which go on straightforward from generation to selection only once. Instead, it generates only the
required nondominated solutions while making the response space of interest narrower gradually.
The proposed method can improve the efficiency by minimizing the number of nondominated
solutions generated.
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Introduction 

Response Surface Methodology (RSM) consists of a group of techniques used in 

empirical study of the relationship between a response and a number of input variables. 

Consequently, the experimenter attempts to find the optimal setting for the input variables 

that maximizes (or minimizes) the response (Box and Draper, 1987; Khuri and Cornell, 

1996; Myers and Montgomery, 2002). In product or process development, it is quite 

common that several response variables are of interest. In this case, determination of 

optimum conditions on the input variables would require simultaneous consideration of all 

the responses. This is called a Multiple Response Surface (MRS) problem (Khuri, 1996).  

An MRS problem is solved through three major steps: data collection, modeling, and 

optimization. Among those steps, this paper is focused on the last optimization step. A 

problem in the MRS Optimization (MRSO) is formulated below in general. 
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where ŷ1(x) denotes the estimated ith response (i = 1, …, I), x is an input variable vector, 

and  is the experimental region. To date, various methods have been proposed for 

MRSO, including desirability function approach (Harrington, 1965; Derringer and Suich, 

1980; Derringer, 1994) and loss function approach (Pignatiello, 1993; Vining, 1998; Ko et 

al., 2005). For various literature review studies on MRSO, see Myers et al. (1989), Myers 

(1999) Myers et al. (2004), and Ardakani and Wulff (2013). 

One of the most important issues in MRSO is how to resolve the conflict among multiple 

responses. In many cases of MRS problems, improving one response is likely to make 

one or some of the other responses get worse. In order to obtain a satisfactory 

“compromise” solution in such a case, a Decision Maker (DM)’s preference information 

on the tradeoffs among multiple responses should be considered in optimizing them. 

MRSO can be considered as one of various application areas of Multiple Objective 

Optimization (MOO). Therefore, MRSO methods also can be classified into the 

categories generally accepted in the MOO literature (Park and Kim, 2005). The MOO 

literature classifies MOO methods into three major approaches in terms of the timing of 

the DM’s preference information articulation: the prior, progressive, and posterior 

preference articulation approach. The prior approach requires that the DM provides 

his/her preference information a priori and then solves the MOO problem straightforward 

without any interaction with the DM. The progressive approach – often referred to as the 

interactive approach – solves the problem by allowing the DM to articulate his/her 

preference information progressively. The posterior approach first generates all (or most) 
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of the nondominated solutions, which can be obtained without the DM’s preference 

information. Then, the DM selects the best one from the set of nondominated solutions a 

posteriori.  

Most of the MRSO methods proposed so far are classified into prior approach. The prior 

approach assumes that the DM can specify all the required preference information before 

solving a problem. But, it is quite difficult for the DM to provide such information in 

advance, because he/she cannot experience the relationships or conflicts among the 

responses. A good alternative is to show the various nondominated solutions to improve 

the DM’s understanding on the tradeoffs among the responses and make the DM select 

the most preferred solution. Such an alternative is the posterior approach. 

In this paper, we propose a new posterior method to MRSO. The distinctive advantage of 

the proposed method is that it does not generate all the nondominated solutions before 

the selection stage, unlike other posterior methods which go on straightforward from 

generation to selection only once. Instead, it generates only the required nondominated 

solutions while making the response space of interest narrower gradually. Therefore, it 

can improve the efficiency by minimizing the number of nondominated solutions 

generated. 

 

Literature Review on MRSO 

The existing studies in MRSO can be categorized into five approaches: priority-based, 

desirability function, loss function, process capability, and probability-based approaches. 

These five approaches take a common strategy that reduces a multidimensional problem 

in (1) into a one-dimensional problem and then solves it. Each approach is reviewed 

below. 

The priority-based approach selects the most important response among a number of 

ones and then uses it as the objective function. The other responses are employed as 

constraints. Assuming there are only two responses of interest, Myers and Carter (1973) 

proposed an optimization formulation that maximizes (or minimizes) the primary response 

with an equality constraint on the other response. Biles (1975) extended this idea by 

allowing not only more than two responses, but also inequality constraints on the 

secondary responses.  

The desirability function approach transforms an estimated response into a scale-free 

value, called a desirability. It is a value between 0 and 1, and increases as the 

corresponding response value becomes more desirable. The overall desirability, another 

value between 0 and 1, is defined by combining the individual desirability values. Then, 

the optimal setting is determined by optimizing the overall desirability. Harrington (1965) 

first proposed a simple form of a desirability function. Derringer and Suich (1980) 

extended Harrington’s approach by suggesting a more systematic transformation scheme 
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from an estimated response to the corresponding individual desirability. The overall 

desirability can be obtained by aggregating the individual desirability functions using the 

geometric mean. Later, different forms of aggregation have been proposed. For example, 

Derringer (1994) proposed the use of a weighted geometric mean. Kim and Lin (2000) 

suggested maximizing the lowest (individual) desirability.  

The loss function approach originates from Taguchi’s robust design concept. It aims to 

find the optimal parameter setting by minimizing the expected loss function. Pignatiello 

(1993) first proposed the use of a squared error loss function. Then, the expected loss is 

derived and minimized. Vining (1998) proposed a modification to Pignatiello’s model, 

which employs the estimated responses in the loss function. Ko et al. (2005) proposed an 

improvement over Pignatiello’s and Vining’s models. They employ the predicted 

responses in the loss function. Ko et al.’s model is a more generalized model thus and 

includes both Pignatiello’s and Vining’s models as special cases.  

The process capability approach derives a process capability index using the estimated 

mean and standard deviation of a response. The overall capability index is obtained by 

combining the individual process capability indices. Then, the optimal setting is 

determined by maximizing the overall capability index.  Barton and Tsui (1991) proposed 

a performance centering as a process capability index. Then, they suggested maximizing 

the minimum of process capability indices. Plante (1999) extended the Barton and Tsui’s 

approach by developing several multicriteria models based on the performance centering. 

Plante (2001) proposed the use of two typical process capability indices, Cpk and Cpm. 

Then, he suggested maximizing the (weighted) geometric mean of individual Cpk’s (or 

individual Cpm’s). Ch’ng et al. (2005) proposed to maximize the weighted sum of 

individual Cpm’s. Köksalan and Plante (2003) proposed an interactive optimization method 

to incorporate the DM’s preference information in their proposed method.  

The probability-based approach assumes a multivariate probability distribution of a 

multivariate response. It first models the distributional parameters in terms of input 

variables and then finds the optimal setting which maximizes the probability that all 

responses simultaneously meet their specifications. Chiao and Hamada (2001) assumed 

the multivariate normal distribution with mean and variance-covariance matrix. The 

distributional parameters are modeled. Then, they suggested maximizing the proportion 

of conformance. Peterson (2004) and Miró-Quesada et al. (2004) estimated the 

distributional parameters in the multivariate t distribution using a Bayesian approach.  

 

Proposed Method  

The proposed method consists of 3 steps: generation of candidate spaces (Step 1), 

generation of representative solutions (Step 2), and selection of the most preferred space 

(Step 3).  
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Step 1: Generation of Candidate Spaces 

Step 1 partition a response space into smaller subspaces. For a single response (say, ith 

response), the response space is divided into ri equal-sized intervals. For the whole (I – 

1) responses the response space is partitioned into (r1  r2    rI-1) equal-sized 

subspaces. The DM determines ri values of (I – 1) responses in this step. Note that one 

response is excluded in the response space partitioning process. In Step 2, 

nondominated solutions are generated within each subspace by the ε-constraint method 

(Haimes et al., 1971; Chankong and Haimes, 1983, p. 274). In this method, one response 

is used as the objective function and the other (I – 1) responses are used as constraints. 

We need to determine the (I – 1) numbers of ε values of in the method and they are 

determined within the (I – 1) dimensional subspace. For this reason, one response is 

excluded in the response space partitioning process.  

 

Step 2: Generation of Representative Solutions 

When the number of responses is two, the partitioned subspaces can be plotted in the 

two-dimensional space which is easy to recognize. However, in case of more than two 

responses, a graphical representation of the partitioned spaces may not provide enough 

insights for selecting the preferred subspace. To overcome this difficulty, we choose to 

use a numeric approach instead of a visual one to understand the subspaces. That is, the 

subspaces are compared based on their representative nondominated solution. In this 

paper, we determine a single nondominated solution which is located in the center of the 

subspace as the representative nondominated solution. The representative 

nondominated solution is generated by the ε-constraint method as well. To obtain the 

representative nondominated solution, the values of εi in the constraints are set as the 

middle point for each response.  

 

Step 3: Selection of the Most Preferred Space  

The DM selects the most preferred subspace by comparing the representative 

nondominated solutions. The total number of the representative nondominated solutions 

is n(r1  r2    rI-1), where n is the number of the representative nondominated solutions 

for each subspace. For example, n = 1, when a single center point is adopted as the 

representative nondominated solution. However, it gets large if the number of responses 

(i.e., I) increases. In such a case, it is not easy to select a single solution. To support the 

DM’s selection process, the interactive selection method (Köksalan and Sagala, 1995) is 

adopted. The DM evaluates whether the (representative) nondominated solution within 

the selected subspace is satisfactory or not. If the solution is satisfactory, the procedure 

ends. Otherwise, it goes back to Step 1. 
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Illustrative Example 

In this section, we illustrate the proposed IP-MRSO via a well-known MRS problem, ‘‘tire 

tread compound problem,” originally presented in Derringer and Suich (1980).  

 

Problem Description 

The problem aims to improve the tire tread performance characterized in four different 

responses by controlling three chemical ingredients. The four responses are PICO 

abrasion index (y1), 200% modulus (y2), elongation at break (y3), and hardness (y4). The 

three chemical ingredients are silica (x1), silane (x2), and sulfur (x3). The experiment was 

conducted in a central composite response surface design. The experimental region Ω 

was given as −1.63 ≤ xi ≤ 1.63, i = 1, 2, 3. The response surfaces for the four responses 

were fitted as follows (Derringer and Suich, 1980): 

 

ŷ1(x) = 139.12 + 16.49x1 + 17.88x2 + 10.91x3 – 4.01x12 – 3.45x22 – 1.57x32  

+ 5.13x1x2 + 7.13x1x3 + 7.88x2x3,       (2) 

ŷ2(x) = 1261.11 + 268.15x1 + 246.5x2 + 139.48x3 – 83.55x12 – 124.79x22  

+ 199.17x32 + 69.38x1x2 + 94.13x1x3 + 104.38x2x3,    (3) 

ŷ3(x) = 400.38 – 99.67x1 – 31.4x2 –73.92x3 + 7.93x12 + 17.31x22 + 0.43x32 

+ 8.75x1x2 + 6.25x1x3 + 1.25x2x3,       (4) 

ŷ4(x) = 68.91 – 1.41x1 + 4.32x2 + 1.63x3 + 1.56x12 + 0.06x22 – 0.32x32  

– 1.63x1x2 + 0.13x1x3 – 0.25x2x3.       (5)

   

For an illustration purpose, we assume that the DM’s underlying true utility functions are 

known and he/she is satisfied with a solution whose utility function value is larger than a 

specific value (0.780). It should be noted that the underlying true utility function is 

unknown in reality.  

 

Solving Results 

Table 1 shows the nondominated solutions generated finally in the second round. The 

DM selected the 1st solution (the gray area) in the table after conducting 7 times of 

pairwise comparisons. Since the utility function value of the 1st solution is larger than the 

predetermined value (i.e., 0.785 > 0.780), the procedure stopped with the selected 

solution. 
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Table 1. The Final (2nd round) Nondominated Solutions in the illustrative Example. 

No. (ε2, ε3, ε4) (x1, x2, x3) (ŷ1, ŷ2, ŷ3, ŷ4) Utility Value 

1 (625, 12.5, 0.9375) (-0.10, 0.35, -1.15) (126.01, 1375, 487.5, 68.44) 0.785 

2 (625, 12.5, 2.8125) (-0.13, 0.69, -1.19) (126.60, 1375, 487.5, 70.10) 0.760 

3 (625, 37.5, 0.9375) (0.05, 0.36, -1.04) (129.75, 1375, 462.5, 68.44) 0.784 

4 (625, 37.5, 2.8125) (0.03, 0.77, -1.07) (131.21, 1375, 462.5, 70.31) 0.759 

5 (875, 12.5, 0.9375) (-0.26, 0.13, -0.86) (126.90, 1250.86, 487.5, 68.44) 0.760 

6 (875, 12.5, 2.8125) (-0.37, 0.42, -0.80) (128.32, 1230.67, 487.5, 70.31) 0.730 

7 (875, 37.5, 0.9375) (-0.10, 0.16, -0.76) (130.55. 1271.08. 462.5. 68.44) 0.763 

8 (875, 37.5, 2.8125) (-0.21, 0.48, -0.70) (132.66. 1262.58. 462.5. 70.31) 0.740 

 

Concluding Remarks 

There have been few attempts to apply a posterior approach to MRSO problems to obtain 

the best compromise solution through a true understanding on the tradeoffs among the 

multiple responses. In this paper, we proposed a new posterior method to MRSO to 

overcome the problem. The proposed method first divides a response space into smaller 

subspaces. Then, the DM selects the preferred space among the subspaces. Once the 

preferred space is selected, the other subspaces are not considered in the subsequent 

process. Therefore, it can generate the smaller number of nondominated solutions 

required only for selection. Through a case problem, we have found that the proposed 

method is very efficient while producing a quite satisfactory solution. 
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