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Abstract:
We provide a framework based on the unbiased extreme value volatility estimator (Namely, the
AddRS estimator) to compute and predict the long position and a short position VaR, henceforth
referred to as the ARFIMA-AddRS-SKST model. We evaluate its VaR forecasting performance using
the unconditional coverage test and the conditional coverage test for long and short positions on
four global indices (S&P 500, CAC 40, IBOVESPA and S&P CNX Nifty) and compare the results with
that of a bunch of alternative models. Our findings indicate that the ARFIMA-AddRS-SKST model
outperforms the alternative models in predicting the long and short position VaR. Finally, we
examine the economic significance of the proposed framework in estimating and predicting VaR
using Lopez loss function approach so as to identify the best model that provides the least monetary
loss. Our findings indicate that the VaR forecasts based on the ARFIMA-AddRS-SKST model provides
the least total loss for various x% long and short positions VaR and this supports the superior
properties of the proposed framework in forecasting VaR more accurately.
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1. Introduction 

Value-at-risk (VaR) is widely used as a measure of market risk by financial institutions, 

regulators, business practitioners and portfolio managers. It is defined as the 

maximum potential loss that could be experienced by a portfolio at a given level of 

confidence over a given time horizon. The value-at-risk approach was first introduced 

by J.P.Morgan (Longerstaey and Spencer, 1996). It is used by financial institutions to 

determine the minimum capital requirement they need to deal with any catastrophic 

event in the market. It can be helpful in designing and implementing appropriate risk 

management policies against uncertain events. The literature provides various 

approaches to compute VaR which include non-parametric, semi-parametric and 

parametric approaches. The validity of any VaR approach is usually assessed by 

computing the number of exceptions by comparing the trading losses with the 

estimated VaR. The violation of the given VaR level by actual loss results in an 

‘exception’.  This can also be related to predicting the tail probability. The literature 

also emphasizes the importance of the assumption of fat tails in estimating and 

predicting VaR (Bollerslev et al., 1992, Pagan, 1996, Palm, 1996). Various studies 

also highlight the importance of considering a possible asymmetry in the distribution of 

returns when estimating VaR (Barndorff‐Nielsen, 1997, Giot and Laurent, 2004). In 

this study, we consider both asymmetry and fat tails in the estimation of VaR that is 

based on the conditional unbiased high-low volatility estimator to examine the 

dissimilar behavior of VaR for long and short positions. 

The volatility estimators based on the high and the low have been acknowledged as 

being highly efficient in the finance literature. The daily open, high, low and close 

prices of most of the tradable assets are easily available. The different variants of the 

extreme value volatility estimators can be categorized as: method of moments 

estimators (Parkinson, 1980, Garman and Klass, 1980, Rogers and Satchell, 1991, 

Kunitomo, 1992, Yang and Zhang, 2000) and maximum likelihood (ML) estimators 

(Ball and Torous, 1984, Magdon-Ismail and Atiya, 2003, Horst et al., 2012). The ML 

estimators are efficient under ideal conditions; however, from a practical viewpoint, 

they suffer from a serious disadvantage. Among the method of moments estimators, 

the Rogers and Satchell (1991), hereafter referred as the RS estimator, stands out 

because it is the only one that is unbiased regardless of the drift parameter whereas 

all others are biased in one way or another if the mean return (drift) is non-zero. 

Kumar and Maheswaran (2013b) find that the RS estimator is severely downward 

biased when implemented in the data because of the random walk effect and propose 

the additive bias correction for the RS estimator, called herein the AddRS estimator, 

and show theoretically and empirically that it is unbiased. Kumar and Maheswaran 

(2013a) examine the statistical properties of the logarithm of AddRS (Log(AddRS)) 

estimator and find that its distribution is approximately Gaussian and hence based on 

the suggestion of Andersen et al. (2003) a linear Gaussian model can be applied to 

model the logarithm of AddRS estimator. We use the conditional volatility model based 
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on the AddRS estimator for computing and predicting VaR in this study and compare 

the findings with various parametric alternative models.  

In this paper, we provide a way of estimating and predicting long and short position 

VaR based on the unbiased AddRS estimator. We compare its forecasting 

performance with the forecasting performance of alternative models from the GARCH 

family and the range-based CARR model. We apply the Kupiec (1995) unconditional 

coverage test and the Christoffersen (1998) conditional coverage test to backtest the 

VaR models to assess their statistical accuracy in capturing upside and downside risk. 

Finally, we examine the economic significance of the proposed framework using 

Lopez (1998) loss function approach to select the best performing VaR model from 

among competing models that pass the unconditional coverage test and conditional 

coverage test as well as that provides the least monetary loss. Our findings are in 

favour of the VaR model based on the AddRS estimator in estimating and predicting 

more accurate VaR. 

The remainder of this paper is organized as follows: Section 2 presents the theoretical 

background of the AddRS estimator. Section 3 describes the data and computational 

procedure to construct the AddRS estimator. Section 4 explains the methodology for 

estimation and evaluation of VaR models. Section 5 reports the empirical results and 

section 6 concludes with a summary of our main findings.  

2. Data and procedure to construct AddRS estimator  

2.1. Data 

We use the daily open, high, low and closing prices of four global stock indices: 

Namely, Standard & Poor 500 (S&P 500), a free-float capitalization-weighted index of 

prices of 500 large cap stocks actively traded on United States stock exchanges; CAC 

40, a capitalization-weighted index of the prices of 40 highest market cap stocks listed 

on the Paris Bourse (Euronext, Paris); IBOVESPA, an accumulation index of about 50 

stocks traded on the São Paulo Stock, Mercantile & Futures Exchange covering 70% 

of the value of the stocks traded; and S&P CNX Nifty, the broad based benchmark of 

the Indian capital market. This covers the major developed markets (S&P 500 and 

CAC 40) from the United States and Europe and major emerging markets (IBOVESPA 

and S&P CNX Nifty) from Latin America and Asia. The sample period for all the 

indices is from January 1996 to May 2015. All the data have been collected from the 

Bloomberg database. In the following tables, we use Nifty to represent the S&P CNX 

Nifty index. 

2.2. Constructing AddRS estimator 

Suppose Ot, Ht, Lt and Ct are the opening, high, low and closing prices of an asset on 

day t. Define: 
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Let ut = 2bt – xt  and vt = 2ct – xt . Hence, the bias corrected extreme value estimators 

are given by: 

 

and 

 

Therefore, the unbiased AddRS estimator is given as: 

 

Kumar and Maheswaran (2013a) examine the distributional properties of the 

unconditional AddRS estimator and the logarithm of AddRS (Log(AddRS)) estimator 

and find that the logarithm of the AddRS estimator is approximately Gaussian. Based 

on the suggestion by Andersen et al. (2003), they made use of a ARFIMA model to 

generate forecasts for the AddRS estimator.  

3. Methodology 

3.1. Statistical approaches to compute Value-at-Risk 

Suppose r1, r2, ……, rn represent returns on a financial asset. Suppose FI = Pr(rt <  

r|Ωt−1) is the cumulative distribution function conditional of the information set (Ωt−1) at 

time t-1. Suppose the dynamics of returns follows the stochastic process: 

 

where  and zt has a conditional distribution function G(z), G(z) = Pr(zt 

<  z|Ωt−1). Suppose VaR(α) is the α quantile of the probability distribution of financial 

returns: 

              F(VaR(α)) = Pr(rt < VaR(α)) = α   or   VaR(α) = inf{ν | P(rt ≤ ν) = α}                  

(5) 

The α-quantile can be estimated in two ways. Firstly, by inverting the distribution of 

returns FI and it is given as: 

                                                           VaR(α) = F-1(α)                                                 

(6.1) 

and secondly, by inverting the distribution function of the innovations G(z) which also 

requires the estimation of σt
2. 
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                                                       VaR(α) = t + σtG
-1(α)                                           

(6.2) 

In this paper, we estimate VaR using the autoregressive fractionally integrated moving 

average (ARFIMA(p, d, q)) model for the logarithm of the AddRS estimator, the 

conditional autoregressive range (CARR) model for the trading range, the generalized 

autoregressive conditional heteroskedasticity (GARCH) model, the exponential 

GARCH (EGARCH) model, the fractionally integrated GARCH (FIGARCH) model and 

the Risk Metrics model based on the skewed Student-t distribution which the focus 

being on estimating G(zt). Moreover, we compute the VaR for the long position (the 

left tail of the probability distribution) as well as the short position (the right tail of the 

probability distribution). Suppose the VaR of a long position are given by equations 

(6.1) and (6.2), then the VaR of the short position can be computed by taking the α-

quantile from the right tail, i.e., by taking 1-α in place of α.   

                                                       VaR(1-α) = F-1(1-α)                                                

(7.1) 

                                                VaR(1-α) = t + σtG
-1(1-α)                                           

(7.2) 

3.2. ARFIMA based conditional volatility model for the AddRS estimator 

The statistical and distributional properties of the logarithm of the AddRS estimator 

suggest that a long memory Gaussian autoregressive model would be appropriate to 

model the dynamics in the logarithm of the AddRS estimator. Hence, we consider a 

univariate autoregressive fractionally integrated moving average (ARFIMA(p,d,q)) for 

estimating and forecasting conditional the AddRS estimator with appropriate 

transformations. The general ARFIMA(p,d,q) model is given as: 

 

where t is the residual term with mean zero and variance , L is the lag operator, d 

is the fractional difference parameter which measures the degree of long memory and 

0<d<1, (L) and θ(L) are polynomials in the lag operator of orders p and q, 

respectively. The orders of the ARFIMA model are based on the Schwarz information 

criterion (SIC).  

When t  N(0, ), then by definition, exp(t)  logN(0, ) (where logN denotes the 

log-normal distribution). Therefore, the conditional AddRS estimator is computed as: 

 

where  and  are estimated using the ARFIMA model given in equation (8).  

We use the approach of Giot and Laurent (2004) in generating 1-day ahead forecasts 
of VaR based on the AddRS estimator. Let us assume that the conditional variance  

of the return series rt is proportional to AddRSt|t-1, that is,  
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Let us assume that the conditional mean of the process follows some AR(p) process.  

Hence, we need to estimate the following model: 

 

Where  is the additional parameter to be estimated to make the variance of zt equal 

to unity. In this specification, it needs to be noted that the dynamic characteristics of 

the conditional variance is captured by the ARFIMA model. Based on the 

recommendation by Giot and Laurent (2004), we assume that zt follows the skewed 

Student-t distribution (SKST), i.e., zt  i.i.d. SKST(0,1,,). The density of the skewed 

Student-t distribution is given as: 

 

where g(·|υ) is the density of symmetric Student-t distribution, υ is the scale 

coefficient, ξ is the coefficient of asymmetry and m and s are the mean and the 

standard deviation of the nonstandard skewed Student-t distribution, respectively. 

Hence, based on the 1-day ahead forecasts of t and σt, the VaR forecasts for the 

long and the short position can be generated by using equations (6) and (7) 

respectively.  

3.3. Backtesting VaR models 

Backtesting is a method to identify whether a given VaR model adequately captures 

the real losses that the asset is exposed to. First, we apply the unconditional coverage 

test proposed by Kupiec (1995) to examine whether the frequency of exceedances 

satisfy the confidence level of VaR. Next, we apply the conditional coverage test 

proposed by Christoffersen (1998) which additionally looks at whether the violations 

are randomly distributed.   

3.3.1. Unconditional coverage test 

We utilize the Kupiec (1995) likelihood ratio test which considers the cases when the 

asset return exceeds the estimated VaR as an independent event arising from a 

binomial distribution. Suppose the confidence level is 1 – α, the sample size is T, the 

number of days of failure is N, the frequency of failure is given as f = N/T. A significant 

difference between f and α indicates a misspecification of the VaR model and this 

hypothesis can be tested by a likelihood ratio test statistic: 
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Under the null hypothesis, LRuc ~ 2(1), and its critical value at 95% confidence level is 

3.84. If LRuc is larger than this critical value, the null hypothesis is to be rejected, 

which would indicate that the VaR model is inadequate. 

3.3.2. Conditional coverage test 

The conditional coverage test jointly tests whether (1) the frequency of failure is in line 

with α, and (2) the VaR violations are independently distributed over time 

(Christoffersen, 1998). The null hypothesis that the VaR violations are independent 

and the expected frequency of violation is equal to α can be tested by the following 

likelihood ratio test statistic: 

 

where LRcc ~ 2(2), nab is the number of observations with value a followed by b, for a, 
b, = 0, 1 and  is the probability of observing an exception, conditional 

on state a. The values of a, b = 1 indicates that a failure has occurred. The critical 

value of LRcc at 95% confidence level is 5.99.  

4. Empirical results 

4.1. The ARFIMA-AddRS-SKST model 

Based on the statistical properties of the Log(AddRS) estimator as shown in Kumar 

and Maheswaran (2013a) for the same data series, we first estimate the 

ARFIMA(p,d,q) model to capture the dynamics in the Log(AddRS) estimator of the 

chosen indices. We make use of the Schwarz information criterion (SIC) to select the 

appropriate orders of ARFIMA model for Log(AddRS) of all the indices under study. 

We find (0,d,1), (1,d,1), (2,d,0) and (1,d,1) being appropriate orders for S&P 500, CAC 

40, IBOVESPA and S&P CNX Nifty, respectively. In the second step, we first identify 

the appropriate orders for the conditional mean equation for rt using the Schwarz 

Information Criterion. Table 1 reports the estimation results of the ARFIMA-AddRS-

SKST model. Panel I in Table 1 reports the ARFIMA(p,d,q) estimates based on the 

first step and panel II reports the results for the conditional mean and conditional 

variance equations as explained above in the second step.  
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Table 1: Results of ARFIMA-AddRS-SKST model 

  S&P 500 CAC 40 IBOVESPA Nifty 

Panel I: 

    θ0 -0.626 -0.304 0.637 -0.067 

 

(2.255) (2.720) (0.592) (1.184) 

θ1 - 0.231# -0.226# 0.172# 

 

- (0.041) (0.023) (0.059) 

θ2 - - -0.076# - 

 

- - (0.018) - 

1 -0.373# -0.512# - -0.397# 

 

(0.019) (0.037) - (0.067) 

d 0.491# 0.495# 0.428# 0.471# 

 

(0.012) (0.007) (0.018) (0.023) 

Panel II: 

    0 0.022† 0.020 0.054* 0.047* 

 

(0.012) (0.015) (0.024) (0.020) 

1 -0.061# -0.029* 0.024 0.097# 

 

(0.014) (0.014) (0.015) (0.015) 

 1.034# 1.402# 1.047# 1.186# 

 

(0.026) (0.032) (0.027) (0.034) 

Log() -0.130# -0.113# -0.062# -0.055# 

 

(0.018) (0.020) (0.021) (0.021) 

 8.573# 13.492# 10.076# 7.050# 
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(1.004) (2.348) (1.415) (0.680) 

LLF -6688.868 -6025.392 -6355.947 -6233.267 

AIC 2.727 2.431 2.637 2.567 

Q(20) 20.751 27.574† 25.266 17.769 

 

[0.292] [0.092] [0.152] [0.404] 

Qs(20) 26.462 24.448 25.056 0.329 

  [0.118] [0.223] [0.199] [1.000] 

#
, 

*
 and 

†
 means significant at 1%, 5% and 10% level of significance, respectively. The terms in 

parenthesis (.) represent standard error and the terms in square braces represent p-value of the 

statistic. 

Based on the insignificant values of the Ljung Box statistics for the residuals and the 

squared residuals (Q(20) and Qs(20)) at conventional level of significance, we take it 

as indicating that the ARFIMA-AddRS-SKST model appropriately captures the 

dynamics in the first and second conditional moments of all the time series under 

study. It may also be noted that the coefficient estimates are significant at 

conventional level of significance for all the indices under study with few exceptions. 

The significant values of the degree of freedom parameter () for all the indices 

indicate that the standardized returns based on the AddRS estimator are leptokurtic. 

Moreover, the standardized returns of all the indices are left skewed (negative value of 

Log()). This impacts the estimation of VaR for the long and short positions. In 

addition, the long memory parameter (d) is significant and less than 0.5 for all the 

indices thereby indicating stationarity of the Log(AddRS) estimator.    

We evaluate the out-of-sample performance of the models in forecasting VaR. Using a 

fixed-length rolling sample and by leaving out the last 1000 observations, we generate 

1000 1-day ahead long and short positions VaR forecasts for each of the indices for 

further analysis. The rolling window approach allows us to capture the dynamic nature 

of data across different time periods. We consider {5%, 1%, 0.5% and 0.25%} VaR 

quantiles in our analysis. We consider the CARR model, the GARCH model, the 

FIGARCH model, the EGARCH model and the RiskMetrics model with innovations 

drawn from the skewed Student-t distribution as alternative models to compare the 

performance of the ARFIMA-AddRS-SKST model in forecasting VaR. 

4.2. Back testing VaR models: Comparison of VaR models 

4.2.1. Rate of failure 

First off, we examine the relative performance of VaR models in term of the rate of 

failure implied by them. A failure is said to occur by a given VaR model if the absolute 
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value of the realized return is greater than the absolute value of the predicted VaR. 

Suppose n is the number of returns observations and nv represents the number of 

VaR violations.  Then, the rate of failure of a VaR model is given as: 

 

Table 2 (not shown here and will be available upon request) reports the failure rate of 

the various VaR models under consideration for both long and short positions. Out of 

32 cases (((4 cases for long position) + (4 cases for short position)) x 4 indices = 32 

cases): the ARFIMA-AddRS-SKST model is ranked as number 1 for 27 cases, the 

CARR model is ranked as number 1 for 8 cases, the FIGARCH model is ranked as 

number 1 for 6 cases, the EGARCH model is ranked as number 1 for 4 cases and the 

RiskMetrics model is ranked as number 1 for only 4 cases. Hence, the ARFIMA-

AddRS-SKST model outperforms the alternative models in appropriately capturing the 

failure rates.    

4.2.2. Unconditional and conditional coverage tests 

Tables 3 and 4 (not shown here and will be available upon request) report the p-value 

for the Kupiec (1995) unconditional coverage test and the Christoffersen (1998) 

conditional coverage test, respectively. The level of significance is set at 5%, that is, if 

the p-value of the model for unconditional and conditional coverage tests is greater 

than 5%, then the given model adequately captures the VaR. Once again, here too we 

have 32 cases (((4 cases for long position) + (4 cases for short position)) x 4 indices = 

32 cases) to evaluate for each coverage test.  

The ARFIMA-AddRS-SKST model based VaR forecasts provide desirable 

unconditional and conditional coverage tests p-value with a success rate of 100% for 

both the tests. The success rate of the CARR model based VaR forecasts is 84.38% 

(successful for 27 cases out of 32 cases) for the unconditional coverage test and 

87.5% (successful for 28 cases out of 32 cases) for the conditional coverage test. The 

success rate for the GARCH model is 75% for the unconditional coverage test and 

81.25% for the conditional coverage test. Other models do not perform better than 

ARFIMA-AddRS-SKST model. Overall, it can be seen that the ARFIMA-AddRS-SKST 

model outperforms the alternative models in capturing VaR more accurately and does 

not exhibit any bias towards emerging or developed markets. 
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Table 3: Unconditional coverage test 

  VaR for long position   VaR for Short position 

 5% 1% 0.5% 0.25%   5% 1% 0.5% 0.25% 

S&P 500         

ARFIMA 0.885 1.000 1.000 0.743  0.885 0.746 0.642 0.743 

CARR 0.666 0.231 1.000 0.743  0.159 0.362 0.398 0.743 

GARCH 0.475 0.362 1.000 0.743  0.475 0.314 0.333 0.279 

FIGARCH 1.000 1.000 0.333 0.743  0.299 0.170 0.333 0.279 

EGARCH 0.093 0.011 0.398 0.020  0.885 0.314 0.333 0.279 

RiskMetrics 0.069 0.011 0.049 0.061   0.093 0.746 0.642 0.759 

CAC 40         

ARFIMA 0.393 1.000 0.642 0.743  0.792 0.754 0.642 0.743 

CARR 0.001 0.139 0.216 0.164  0.557 0.139 0.049 0.383 

GARCH 0.037 0.538 0.642 0.383  0.885 0.362 0.216 0.383 

FIGARCH 0.204 0.538 0.642 0.383  0.557 0.754 0.398 0.383 

EGARCH 0.122 0.510 0.642 0.383  0.233 0.754 0.642 0.383 

RiskMetrics 0.027 0.362 0.664 0.383   0.566 0.362 0.398 0.383 

IBOVESPA         

ARFIMA 0.770 1.000 1.000 0.759  0.375 0.746 0.642 0.743 

CARR 0.037 0.754 1.000 0.759  0.002 0.170 0.126 1.000 

GARCH 0.233 0.314 0.333 0.759  0.000 0.030 0.126 0.279 

FIGARCH 0.770 0.746 0.664 0.743  0.000 0.030 0.333 0.279 

EGARCH 0.001 0.079 0.126 1.000  0.000 0.030 0.029 1.000 
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RiskMetrics 0.019 0.754 0.216 0.164   0.178 0.314 1.000 0.759 

S&P CNX Nifty        

ARFIMA 0.666 1.000 0.642 0.759  0.884 1.000 1.000 0.743 

CARR 0.004 0.538 0.642 0.743  0.475 1.000 1.000 0.759 

GARCH 0.133 0.009 0.029 1.000  0.048 0.009 0.029 1.000 

FIGARCH 0.461 0.009 0.126 1.000  0.375 0.314 0.126 1.000 

EGARCH 0.009 0.009 0.029 0.279  0.022 0.030 0.029 1.000 

RiskMetrics 0.159 0.754 0.333 1.000   0.257 0.362 0.642 0.743 

 

4.3. Economic significance analysis using Lopez (1998) loss function 

approach 

To examine the economic significance of the findings, we us the loss function 

approach, proposed by Lopez (1998), and this provides a way to examine the 

magnitude of the exceedance which can be related to the monetary loss. We apply the 

loss function only on those VaR models which qualify the unconditional coverage test 

and the conditional coverage test. 

For long position VaR, the results indicate that out of 16 cases (4 indices x 4 levels of 

VaR), 12 cases are in favor of the ARFIMA-AddRS-SKST model in capturing 

appropriate VaR with minimum total loss. This include: (1) cases related to 1%, 0.5% 

and 0.25% long position VaR of S&P 500, CAC 40 and IBOVESPA (9 cases); (2) 5% 

VaR of CAC 40 and IBOVESPA (2 cases); and (3) 1% VaR of S&P CNX Nifty (1 

case). The remaining 4 cases are in favor of remaining models which include one 

case of CARR model (5% VaR) for S&P 500, and three cases from S&P CNX Nifty for 

5% VaR (GARCH model), 0.5% VaR (FIGARCH model) and 0.25% VaR (EGARCH 

model). This indicates that the ARFIMA-AddRS-SKST model perform better than other 

models in capturing long position VaR . 

For short position VaR, out of 16 cases, 14 cases are in favor of the ARFIMA-AddRS-

SKST model in capturing appropriate short position VaR with minimum total loss. The 

remaining two cases include: one case is from the FIGARCH model for 5% VaR of 

S&P 500 and the second case is from the FIGARCH model for 0.5% VaR of S&P CNX 

Nifty. Here also, the results indicate that the ARFIMA-AddRS-SKST model better than 

other models in capturing short position VaR. 

Overall, the results indicate that out of 32 cases (for both long and short position VaR): 

26 cases are in favor of the ARFIMA-AddRS-SKST model in capturing appropriate 
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VaR with minimum total loss. Overall, our results indicate that the ARFIMA-AddRS-

SKST model based VaR forecasts outperforms the VaR forecasts from the alternative 

models. 

Table 6: Loss function 

  VaR for long position   VaR for short position 

  5.00% 1.00% 0.50% 

0.25

%   5.00% 1.00% 0.50% 0.25% 

S&P 500          

ARFIMA 

108.20

6 

16.91

6 5.976 2.007  69.600 7.001 3.116 1.000 

CARR 96.118 

19.15

1 - 2.039  80.046 

14.91

9 - 2.078 

GARCH 

108.04

4 - - -  73.485 8.250 3.164 1.000 

FIGARCH 96.254 

19.27

0 - -  59.152 7.021 3.171 1.012 

EGARCH 

113.99

2 - - -  65.944 7.705 - 1.005 

RiskMetric

s  - -  -  -     - 

10.90

8 4.557 3.027 

CAC 40          

ARFIMA 95.359 

11.63

7 2.410 1.055  56.596 5.598 1.348 7.519 

CARR - - 

11.24

0 6.240  

111.57

1 

34.30

8 

20.51

5 9.151 

GARCH - - 6.861 5.025  

124.80

8 

36.73

1 

22.28

2 

12.36

2 

FIGARCH 

112.99

1 

16.97

2 6.065 4.579  

119.34

7 

37.07

7 

23.99

7 

15.07

5 
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EGARCH - 

14.64

3 7.666 5.932  

107.73

2 

29.36

8 

14.33

7 9.120 

RiskMetric

s  - -  9.668 5.594    - 

38.61

1 

24.01

6 

15.40

3 

IBOVESP

A          

ARFIMA 73.938 7.052 2.082 1.001  23.155 1.275 2.141 1.004 

CARR - 

23.06

5 - 3.814  - 7.410 2.175 1.154 

GARCH 

104.48

2 

18.46

2 - 3.491  - - 2.495 1.033 

FIGARCH - 

20.75

7 - 3.100  - - 3.296 1.010 

EGARCH - - 2.133 1.152  - - - 1.051 

RiskMetric

s  - -  -      73.069 

11.91

1 6.629 3.420 

S&P CNX Nifty         

ARFIMA 70.417 

11.28

3 2.345 1.326  52.281 7.524 4.722 1.403 

CARR - 

17.11

0 5.290 2.061  78.667 

12.54

4 - - 

GARCH 68.765 - - 2.004  66.561 - - 1.752 

FIGARCH 72.576 - 2.054 1.531  60.550 8.630 2.018 1.661 

EGARCH - - - 1.004  - - - 1.541 

RiskMetric

s 93.924 -  3.031 1.428   84.164  - -  2.340 
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5. Conclusion 

In this study, we provide a framework to estimate and forecast the long position as 

well as the short position VaR using the unbiased extreme value volatility estimator 

(The AddRS estimator). Our framework also incorporates the impact of asymmetry 

and leptokurtosis by assuming the skewed Student-t distribution for the innovation 

term. This framework is referred as the ARFIMA-AddRS-SKST model. Using a rolling 

sample approach based on daily data, we generate 1000 1-day ahead VaR forecasts 

for both long as well as short positions for four global indices (S&P 500, CAC 40, 

IBOVESPA and S&P CNX Nifty). We assess the performance of the ARFIMA-AddRS-

SKST model in predicting accurate long position and short position VaR using the rate 

of failure approach, the Kupiec (1995) unconditional coverage test and the 

Christoffersen (1998) conditional coverage test and compare them with the 

corresponding results from alternative models with innovations drawn from the skewed 

Student-t distribution. We select the best performing VaR models for further analysis. 

Our findings from these tests support the superiority of the ARFIMA-AddRS-SKST 

model in predicting VaR more accurately. Finally, we undertake an analysis based on 

the Lopez (1998) loss function approach to study the economic significance of the 

ARFIMA-AddRS-SKST model. Our findings indicate that the ARFIMA-AddRS-SKST 

model outperform other models in forecasting more accurate VaR. In this context, this 

study highlights the importance of incorporating more information, in the form of open, 

high, low and close prices of asset, in computing and predicting VaR more accurately. 
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