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Abstract:
A novel approach is presented to solve  multi-objective optimisation problems (MOOP).The algorithm
combines the Trust Region (TR) algorithm with the Particle Swarm Optimisation (PSO) method.The
MOOP is converted to a single objective optimisation problem (SOOP) using weighted method and
some of the points in the search space are generated. For each point, the TR algorithm is used to
solve the SOOP to obtain a point on the Pareto frontier. All points obtained are used as particle
position for PSO to get all the points on the Pareto frontier. The algorithm is tested using several
bench mark problems and coded using MATLAB 7.2 which show successful result in finding a Pareto
optimal set.
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INTRODUCTION 

TR method generate steps with the help of a quadratic model of the objective function, 
define a region around the current iterate within which they trust the model to be an adequate 
representation of the objective function and then choose the step to be approximate minimzer 
of the model in this region. If a step is not acceptable, they reduce the size of the region and 
find a new minimize. In general, the direction of the step changes whenever the size of the TR 
is altered (Ou, 2011). To see the idea of TR, consider the unconstrained optimization problem: 

 
nx

minimize    f x


 (1) 

where, f(x) is a nonlinear continuous differentiable function in n . For a known iterate xk the 
TR method determines subsequent iterate using: 

 
k 1 k kx x d     (2) 

where, dk is trial step determined by minimizing a local quadratic (approximating) model of f at 
xk (TR sub-problem) given by: 
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subject to    d ,
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where, Hk is Hessian of f(x) or approximate to it and k>0 is the TR radius. Using the ratio: 
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traditional TR methods evaluate an agreement between the model and the objective function. 
The trial step dk is accepted whenever rk is greater than a positive constant. This leads us to 
the new point xk+1 = xk +dk and the TR radius is updated. Otherwise, the TR radius must be 
diminished and the sub-problem (3) must be solved again (Ahookhosh et al., 2012). 

Because of the boundedness of the TR, TR algorithms can use non-convex approximate 
models. This is one of the advantages of TR algorithms comparing with line search algorithms. 
TR algorithms are reliable and robust, they can be applied to ill-conditioned problems, they have 
very strong convergence properties and have been proven to be theoretically and practically 
effective and efficient for unconstrained and equality constrained optimization problems 
(Ahookhosh and Amini, 2010; Zhang et al., 2010). Also, The TR algorithm has proven to be 
a very successful globalization technique for nonlinear programming problems with equality 
and inequality constraints (El-Sobky, 2012)  

For MOOPs, Kim and Ryu (2011) developed an iterative algorithm for bi-objective 
stochastic optimization problems based on the TR method and investigated different sampling 
schemes. Their algorithm does not require any strong modeling assumptions and has great 
potential to work well in various real-world settings. 

PSO is an Evolutionary Computational (EC) model which is based on swarm intelligence. 
PSO is developed by Kennedy et al. (2001) who have been inspired by the research of the 
artificial livings. Similar to EC techniques, PSO is also an optimizer based on population. The 
system is initialized firstly in a set of randomly generated potential solutions and then performs 
the search for the optimum one iteratively. Whereas the PSO does not possess the crossover 
and mutation processes used in EC, it finds the optimum solution by swarms following the 
best particle. Compared to EC, the PSO has much more profound intelligent background and 
could be performed more easily. Based on its advantages, the PSO is not only suitable for 
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science research, but also engineering applications, in the fields of evolutionary computing, 
optimization and many others.  

Multi-Objective Optimization (MOO) has been one of the most studied application areas of 
PSO algorithms. Number of approaches have been utilized and/or designed to tackle MOOPs 
using PSO. A straight forward approach is to convert MOO to a SOOP. Parsopoulos and 
Vrahatis (2002) presented a first study of the performance of the PSO in MOOPs. In recent 
years, many particle swarm algorithms were proposed for solving MOOPs (Mousa et al., 2012; 
Figueira et al., 2010). On the other hand, a comprehensive survey of the state-of-the-art in 
Multi-Objective (MO) particle swarm optimizers can be found in (Sierra and Coello, 2006) 
where different techniques reported in Multi-Objective Particle Swarm Optimization (MOPSO) 
development have been categorized and discussed. 

This study presents a hybrid algorithm combining TR and PSO for solving MOOPs, which 
can overcome the disadvantage of the TR method (such as restrictions on the TR radius) and 
solve a class of MOOPs efficiently. It is a new algorithm that performs random searching and 
deterministic searching for solving MOOPs. In the proposed algorithm, first MOOP converting 
to SOOP, TR is used to obtain a point on the Pareto frontier and finally homogeneous PSO is 
applied to get all the points on the Pareto frontier. 

MULTI-OBJECTIVE OPTIMIZATION 

The MOO is a very important research area in engineering studies because real world 
design problems require the optimization of a group of objectives. Thanks to the effort of 
scientists and engineers during the last two decades, particularly the last decade, a wealth of 
MO optimizers have been developed and some MOOPs that could not be solved hitherto were 
successfully solved by using these optimizers (Tang, 2013). The general minimization problem 
of q objectives can be mathematically stated as:  

   

 

 

jminimize: f x f x ,  j 1,2,...,q

subject to the constraints: Ci x 0,     i 1,2,...,p,

Ce x 0,      e 1,2,...,m,

   
  


  

   (5) 

where, fi (x) is the j-th objective function , Ci (x) is the i-th inequality constraint, Ce (x) is the e-
th equality constraint and x = [x1,x2,…,xn] is the vector of optimization or decision variables; 
where n the dimension of the decision variable space. The MOO problem then reduces to 
finding an x such that fj (x) is optimized. Since the notion of an optimum solution in MOOP is 
different compared to the SOOP, the concept of Pareto dominance is used for the evaluation 
of the solutions. This concept formulated by Vilfredo Pareto is defined as follows: 

Definition 1. (Dominance Criteria). For a problem having more than one objective function 
(say, fj j = 1,…,q, p>1), any two solution xa  and xb can have one of two possibilities, one 
dominates the other or none dominates the other. A solution xa is said to dominate the other 
solution xb, if both the following condition are true. The solution xa is no worse (say the 

operator   p  denotes worse and f  denotes better) than xb in all objectives, or  j af x p  j bf x  for 

all j =1,..,q objectives. 

The solution xa is strictly better than xb in at least one objective, or    j a j bf x f xf
 
for at least 

one j {1,…,q}.  

If any of the above condition is violated, the solution xa dose not dominates the solution xb. 

Definition 2. (Pareto optimal solution). X* is said to be a Pareto optimal solution of MOOP if 

there exists no other feasible x such that, fj (x)fj (x*) for all j = 1,…,q and fj (x)<fj  (x*) for at 
least one objective function fj. 
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WEIGHTED METHOD 

Weighted method is an intuitive way for MOO. In this approach, different objectives are 
weighted and summed up to one single objective. By using weighted method (Friedrich et al., 
2013), we convert the constrained MOOP (5) to SOOP. This method consists of creating a 
single-objective model by weighing the q objective functions by assigning a weight to each the 
functions. Through the weighted method the MOOP (5) is formulated as: 

   

 

 

q

j j

j 1

minimize       f x w f x

subject to      Ci x 0,     i 1,2,...,p,

                     Ce x 0,      e 1,2,...,m,





 

 



 (6) 

where, w1,…,wq are non-negative weights with w1+w1+…+wq = 1. The weights w1,…,wq 
are 

determined as follows: 

q

j j j

j 1

w random random ,  j 1,...,q


    (7) 

 

where, random1, random2,…, randomq, are non-negative random integers. The following 
conclusions can be drawn for the weighted method:  

 It is computationally very efficient 

 It is conceptually very easy to understand 

 Only one solution can be obtained in one run, assuming that the Pareto front is convex 

 The solutions located in the concave region of the Pareto front cannot be obtained 

PARTICLE SWARM OPTIMIZATION 

PSO is an evolutionary computation technique motivated by the simulation of social 
behavior (Kennedy et al., 2001). Namely, each individual (agent) utilizes two important 
kinds of information in decision process. The first one is their own experience; that is, they 
have tried the choices and know which state has been better so far  and they know how 
good it was. The second one is other agent’s experiences; that is, they have knowledge of 
how the other agents around them have performed. Namely, they know which choices their 
neighbors have found are most positive so far and how positive the best pattern of choices 
was. In the PSO system, each agent makes his decision according to his own experiences 
and other agent’s experiences. The system initially has a population of random solutions. 
Each potential solution, called a particle (agent), is given a random velocity and is flown 
through the problem space. The agents have memory and each agent keeps track of its 
previous (local) best position (called the Pbest) and its corresponding fitness. There exist a 
number of Pbest for the respective agents in the swarm and the agent with greatest fitness is 
called the global best (Gbest) of the swarm. Each particle is treated as a point in a n-dimensional 
space. The i-th particle is represented as xi = (xi1,xi2,…,xin). The best previous position of the i-th 
particle (Pbesti) that gives the best fitness value is represented as Pi = (pi1, pi2,….,pin). The best 
particle among all the particles in the population is represented by Pg = (pg1, pg2,…,pgn). The 
velocity, i.e., the rate of the position change for particle i is represented as vi = (vi1,vi2,…,vin).  

The particles are manipulated according to the following equations (the superscripts denote the 
iteration): 

   t 1 t t t

i i 1 1 i i 2 2 g iv wv c r p x c r p x       (8) 
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t 1 t t 1

i i ix x v    (9) 

where, i = 1,2,….,N and N is the size of the population; w is the inertia weight; c1 and c2 are 
two positive constants, called the cognitive and social parameter respectively; r1 and r2 are 
random numbers uniformly distributed with in the range [0,1]. Equation 8 is used to determine 
the i-th particle’s new velocity t 1

iv  , at each iteration t, while Equation 9 provides the new 

position of the i-th particle t 1

ix  , adding its newvelocity t 1

iv  , to its current position t

ix . Figure 1 

shows the Description of velocity and position updates of a particle for a two-dimensional 
parameter space. Figure 2 shows the pseudo code of the general PSO algorithm. 

 

 

 

Fig. 1.  Description of velocity and position updates in particle swarm optimization for a two dimensional 
parameter space 

 

 

 

 

Fig. 2. The pseudo code of the general PSO algorithm 

THE PROPOSED APPROACH 

In the following, the proposed algorithm is presented. The proposed algorithm contains 
three stages initialization stage, TR stage and PSO stage. 

Initialization stage 

 Initialization 

 Initialize N points in the search space 
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 Converting MOOP to SOOP 

 The non-negative weights (w1,…,wm) is generated using Equation 7 

 Construct the weighted problem (6) 

 Converting the general nonlinear optimization problem (6) to equality Constrained  
problem 

 Following Dennis et al. (1999), we define the indicator matrix  W(x) pp, whose diagonal 
entries are 

 
 

 
i

1     if   Ci x 0
w x

0     if   Ci x 0

 
 



  (10) 

Using this matrix, the Problem defined in Equation 6 can be transformed to the following 
equality constrained optimization problem: 

 

     

 

T

minimize        f x

subject to       1 2Ci x W x Ci x 0,

                      Ce x 0.





  (11) 

The above problem can be rewritten as: 

 

 

minimize       f x

subject to       h x 0,
 (12) 

where, h(x) = [Ce (x) 1/2Ci (x)TW (x)Ci (x)].  

The matrix W(x) is discontinuous; however, the function W(x)Ci(x) is Lipschitz continuous 
and the function Ci (x)T W(x)Ci (x) is continuously differentiable (Dennis et al., 1999). 

The Lagrangian function associated with problem defined in (12) is given by: 

     T

k k k k kL x , f x h x    (13) 

where, k is the Lagrange multiplier vector associated with equality constraint h(xk) . 

The augmented Lagrangian is the function: 

     
2

kx, ;r L x, r h x       (14) 

where r> 0 is a parameter usually called the penalty parameter. 

TR Stage 

The detailed description of TR algorithm for solving problem (12) is presented. 

The reduced Hessian approach is used to compute a trial step dk. In this approach, the trial 
step dk is decomposed into two orthogonal components; the normal component n

kd  and the 

tangential component t

kd . The trial step dk has the form n t

k k k kd d Z d  , where Zk 
is a matrix whose 

columns form an orthonormal basis for the null space of h(xk)T.  

We obtain the normal component n

kd  by solving the following TR sub-problem: 
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2

T n

k k

n

k

1
minimize        h x h x d

2

subject to       d ,  



 

 (15) 

For some  (0,1).   

Given the normal component n

kd , we compute the tangential component t t

k k kd Z d  by solving 

the following TR sub-problem: 

  
T

T
T n

k x k k k k

t t T t

k k k

2
t 2 n

k k k

minimize        Z L x , H d

1
d d Z H Z d

2

subject to       Z d d ,

   
 



  

   (16) 

Once the trial step is computed, it needs to be tested to determine whether it will be 
accepted or not. To do that, a merit function is needed. We use the augmented Lagrangian 
function (14) as a merit function. To test the step, we compare the actual reduction in the merit 
function in moving from xk to xk+dk versus the predicted reduction. 

The actual reduction in the merit function is defined as: 

   

   

k k k k 1 k 1 k

2 2

k k 1

Ared L x , L x , r

h x h x

 



    

 
  

 (17) 

The predicted reduction in the merit function is defined as: 

 

    

T T

k x k k k k k k

TT

k k k k

1
Pred L x , d d H d

2

h x h x d

    

 

 

     
22 T

k k k k k+r h x h x h x d
 

 
     (18) 

where, k = (k+1-k)  

If (Aredk/ Predk)<0where 0(0, 1) is a small fixed constant, then the step is rejected. In this 

case, the radius of the TR k 
is decreased by setting k = 3 ||dk||, where 3(0, 1) and another 

trial step is computed using the new TR radius. If (Aredk/Predk)2, where 2>0, then the step 

is accepted and set the TR as k+1=min{max,Max{min,1k}}. If 0 (A redk/Predk)<2 then the 

step is accepted and set the TR as k+1 = max (k,min). Finally, the algorithm is terminated 

when either ||dk||1 or T

k x k k 2Z L h ,     for some 1,2>0. The pseudo code of TR stage 

showing in Fig. 3. 

PSO stage 

In this stage a homogeneous PSO for MOOP is proposed with a dynamic constriction factor 
(Abd-El-Wahed et al., 2011) to restrict velocity of the particles and control it. In homogeneous 
PSO one global repository concept is proposed for choosing pbest and gbest, this means that 
each particle has lost its own identity and treated simply as a member of social group. The 
procedure of the PSO stage is as follows. 

Step1: Initialization 
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All non-dominated points (which obtained by applying TR stage) chosen as particles 
position t

ix .  

PSO parameters such as velocity t

iv , inertia weight w and learning rates c1 and c2 are set 

up. 

Store non-dominated particles in Pareto repository. If the specific constraint doesn’t exist 
for a repository, the size of the repository is unlimited. 

Step2: Evaluation 

Evaluate the MO fitness value of each particle and save it in a vector form. 

Step3: Floating 

Two optimal solutions are chosen randomly for pbest and gbest from the repository.  

Determine the new position of each particle with Equation 8 and 9. 

Step4: Repairing of Particles: 

where, the particle i start at the position t

ix with velocity t

iv  in the feasible space, the new 

position t 1

ix   in Fig. 3 depends on velocity
 

t 1

iv  . 

 

Choose 
1 2 0 1 2 3,  ,  ,  ,  ,  ,       

0 max min, ,    such that 
1 0  , 

2 0,   
3 10 1 ,     

0 20 1,     
2 0,   

and 
min 0 max        

For each point N  0

nx  , compute 
0W , 0

n nH  , and set 0k  . 

If  2

T

k x k kZ L h      end for 

Solve the sub-problem (15) to give the normal component n

kd  

Solve  the sub-problem (16) to give the tangential component t t

k k kd Z d  

Compute the trial step n t

k k k kd d Z d   

If  2kd    end for 

Compute 
kAred and 

kPred  

While   0k kAred Pred   3k kd  compute a new trial step 
kd  

If  0 2,k kAred Pred    then 
1k k kx x d     1 minmax ,k k    . 

Else   2,k kAred Pred  then 
1k k kx x d      1 max min 1min , max ,k k     . 

Update 
1 1,k kH W  , and set 1k k   

Fig. 3. The pseudo code of TR stage 
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Fig. 4. The movement of the particle i through search space 

 

Store non-dominated solution in Pareto repository 

Chose non-dominated solution as position of particles t

ix . 

Initialize parameters for PSO  1 2,  ,  ,  t

iv w c c . 

While (number of iterations, or the stopping criterion is not met) 

Chosen randomly pbest and gbest from the repository.  

Update particles velocity  1t

iv   and position 1t

ix   according to equation (8) and equation 

(9) of all particles. 

Repair the unfeasible particle according to equation (20). 

Evaluate fitness of particle swarm 

Selection and update the repository 

End while 

Fig. 5. The pseudo code of PSO stage 

To restrict (control) the particle’s velocity t

iv , a modified constriction factor (i.e., dynamic 

constriction factor) is presented to keep the feasibility of the particles. E.g., Fig. 4 shows the 
movement of the particle i through the search space without any control factor (dashed line) also 
with a modified constriction factor (solid line). Where the particle i start at position t

ix  with velocity 
t

iv  in the feasible space, the new position t 1

ix 

 
depends on velocity t 1

iv 

 
making the particle lose its 

feasibility, so we introduce a modified constriction factor: 

2

2

2
 

      
  (19) 

where,  is the age of the infeasible particle (i.e., how long it is still infeasible) and it is increased 
with the number of failed trials to keep the feasibility of the particle. The new modified positions of 
the particles are computed as:  

t 1 t t 1

i i ix x  v     (20) 
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For each particle, the feasibility is checked, if it is infeasible, the  parameter is implemented to 
control its position and velocity. 

Step5: Selection and Update the Repository 

Check the Pareto optimality of each particle. If the fitness value of the particle is non-dominated 
when it compared to the Pareto optimal set in a repository, save it into the Pareto repository. 

In the Pareto repository, if a particle is dominated from new one, then discard it. 

Step6: Repeat 

Repeat again step 2 to step 5 until the number of generation reaches to given . 

The PSO stage algorithm needs at least two Pareto solutions in the first generation to avoid 
premature convergence. The pseudo code of PSO stage showing in Fig. 5. Figure 6 shows 
the flow chart of proposed algorithm. 

NUMERICAL RESULTS 

In order to validate the proposed algorithm, several benchmark problems are solved which are 
reported in the literature (Deb, 2001). The algorithm is coded in MATLAB 7.2 and the simulations are 
run on a Pentium 4 CPU 900 MHz with 512 MB memory capacity. The parameters adopted in the 
implementation of the proposed algorithm are listed in Table 1. 

Test Problems 

For evaluating the performance of the proposed approach nine well-known MO benchmark 
problems are used. Each test problem consists of two objective functions with/without 
constraints and has continuous/discrete with convex/nonconvex Pareto front. The following test 
problems for study are considered (Deb, 2001):  

Test Problem-1 (Continuous Convex): 

 

   

2

1 1

2 1 2

Minimize     f x x 4

Minimize     f x x 1 x 5



  
 

Subject to: 

 

 
1

2

x 0,10

x 0,10




 

Test Problem-2 (Continuous Convex): 

 

 

1 1

2
2

1

Maximize      f x 1.1 x

1 x
Maximize      f x 60

x

 


 

 

Subject to: 

 

 
1

2

x 0.1,1

x 0,5




 

Test Problem-3 (Discrete): 

 

     

1 1

2

Minimize      f x x

Minimize      f x g x h x
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2

2

1 1
1

where      g x 1 10x

f f
and          h x 1 sin 8 f

g g

 

 
    

 

 

Subject to: 

 

 
1

2

x 0,1

x 0,1





 

Fig. 6. Flow chart of proposed algorithm 

Table 1. The parameter adopted in the implementation of the proposed algorithm 
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Parameter Value Parameter Value 

N 20-50 max 1050 

1, 2 10-7 min 10-3 

0 0 PSO iteration 50-200 

1 2 w 0.6 

2 0.25 c1 2.8 

3 0.25 c2 1.3 

0 (1,1.5)min  15 

 

Test Problem-4 (Continuous Convex): 

 

 

 

2

1 1

2

1
2 2

2

Minimize      f x x

1 x
Minimize      f x

x






 

Subject to: 

1

2

x 0.1,1

x 0, 5

 
 

 
 

 

Test Problem-5 (Continuous Convex): 

 

   

2 2

1 1 2

2 2

2 1 2

Minimize      f x x x

Minimize      f x 2 x x

 

  
 

Subject to: 

 

 
1

2

x 50,50

x 50,50

 

 
 

Test Problem-6 (Continuous Convex): 

 

     

2 2

1 1 2

2 2

2 1 2

Minimize      f x 4x 4x

Minimize      f x x 5 x 5

 

   
 

Subject to: 

   

     

2 2

1 1 2

2 2

2 1 2

C x x 5 x 25

C x x 8 x 3 7.7

   

    
 

 

 
1

2

x 0,5

x 0,3




 

Test Problem-7 (Continuous Convex): 

     

   

2 2

1 1 2

2

2 1 2

Minimize      f x 2 x 2 x 2

Minimize      f x 9x x 1

    

    

Subject to: 
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2 2

1 1 2

2 1 2

C x x x 225

C x x 3x 10 0

  

   
 

 

 
1

2

x 20,20

x 20,20

 

 
 

Test Problem-8 (Discrete): 

 

 

1 1

2 2

Minimize      f x x

Minimize      f x x




 

 

Subject to: 

      

       

2 2

1 1 2 1 2 1

2 2

2 1 2 2

C x x x 1 0.1cos 16arctan x x 0 x 0,

C x x 0.5 x 0.5 0.5 x 0,

      

      
 

Test Problem-9 (Continuous Non-convex): 

 
   

     

 

2 2

1 2

1 2 2 2

3 4 5

2 2 2 2 2 2

2 1 2 3 4 5 6

25 x 2 x 2
Minimize      f x

x 1 x 4 x 1

Minimize      f x x x x x x x

   
  
       

     

 

Subject to: 

 

 

 

 

 

   

   

1 1 2

2 1 2

3 2 1

4 1 2

2

5 3 6

2

6 5 6

C x x x 2 0

C x 6 x x 0

C x 2 x x 0

C x 2 x 3x 0

C x 4 x 3 x 0

C x x 3 x 4 0

   

   

   

   

    

    

        

 

 

 

 

 

 

1

2

3

4

5

6

x 0,10

x 0,10

x 1,5

x 0,6

x 1,5

x 0,10













 

RESULTS AND DISCUSSION 

The proposed approach able to obtain the Pareto front of these kind of problems as shown in 
Fig. 7 -15. 

For the test problems 1-5 (Fig. 7-11) we can see that our approach able to find well distribution 
of the Pareto-optimal curve in the objective space. Also, it is observed that the resulting Pareto 
front is smooth, uniformly distributed and it achieves very good solutions at the two ends of the 
curve. 

The test problem 6 (Fig. 12) and the test problem 7 (Fig. 13) are fairly simple in that the 
constraints may not introduce additional difficulty in finding the Pareto-optimal solutions. It can be 
observed that our approach perform well and have a dense sampling of solutions along the true 
Pareto optimal curve. 

The test problem 8 (Fig. 14) and the test problem 9 (Fig. 15) are relatively difficult. The 
constraints in the test problem 8 make the Pareto-optimal set discontinuous. The constraints in the 
test problem 9 divide the Pareto-optimal set into five regions.  
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Fig. 7. Pareto front for the Test Problem (1) 

 

 

 

Fig. 8. Pareto front for the Test Problem (2) 
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Fig. 9. Pareto front for the test problem (3) 

 

 

Fig. 10. Pareto front for the test problem (4) 

 

 

 

Fig. 11. Pareto front for the Test Problem (5) 
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Fig. 12. Pareto front for the Test Problem (6) 

 

 

Fig. 13. Pareto front for the Test Problem (7) 
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Fig. 14. Pareto front for the Test Problem (8) 

 

 

Fig. 15. Pareto front for the Test Problem (9) 

 

As it can be seen from the graphs for the TNK problem (Fig. 14), our approach and displayed a 
better distribution of the Pareto optimal points and there are no gaps between the nondominated 
solutions which Making the curve is smooth. For the OSY problem (Fig. 15), it can be seen that 
our approach gave a good sampling of points at the mid-section of the curve and found a few 
points in the rest of the curve. 

Generally we can say that the results have demonstrated that the proposed algorithm can 
successfully find the Pareto optimal for all test problems except test problem 9; where it’s Pareto is 
nonconvex in the objective space. As we know that the classical techniques aim to give a single 
point (solution) at each run of problem solving but, the proposed approach generates the set of 
Pareto optimal solution, which provides the facility to save computing time. 

 

Table 2. The GD criterion for test problems 

Test problem Generational Distance (GD) 

Test problem (1) 0.00010458 

Test problem (2) 0.00655497 

Test problem (3) 0.00569784 

Test problem (4) 0.00549784 

Test problem (5) 0.00012578 

Test problem (6) 0.00048679 

Test problem (7) 0.00026457 

Test problem (8) 0.00075481 

Test problem (9) 0.01587945 
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Performance Assessments 

There are usually two important aspects of MOO performance. One is the spread across the 
Pareto optimal front and the other is the ability to attain the global optimum or final tradeoffs. Every 
MO optimizer should have the ability of exploration and exploitation to achieve these two goal 
simultaneously. There are several metrics to express these two aspects with a quantitative 
assessment. 

To evaluate the proposed algorithm, the Generational Distance (GD) criterion is used Kim and 
Ryu (2011). When the optimal Pareto set is known, GD is a way of estimating how far are the 
elements in the set of nondominated vectors found so far from those in the Pareto optimal set and 
is defined as follows: 

Nv Nv

ii 1
d

GD
Nv




 (21) 

where, Nv is the number of vectors in the set of nondominated solutions found so far and di is the 
Euclidean distance between each of these and the nearest member of the Pareto optimal set. If all the 
solution candidates are in the Pareto optimal set, then the value of GD is 0.  

Table 2 shows the GD criterion for the nine test problems. In Table 2, we can see that GD for 
the first 8 problems is very small that mean the approximate Pareto obtained by the proposed 
approach is very near to the true Pareto solution. On the other hand, for test problem (9) we can 
see that GD criterion is greater than the other test problems. This is due to that this problem has 
nonconvex Pareto solution. 

CONCLUSION 

This study presents a hybrid algorithm combining TR and PSO for solving MOOPs. It is a new 
algorithm that performs random searching with deterministic searching and integrates the merits of 
both TR and PSO. In the proposed algorithm, MOOP converting to SOOP, TR is used to obtain a 
point on the Pareto frontier and homogeneous PSO with a dynamic constriction factor is applied to 
get all the points on the Pareto frontier. Various kinds of MO benchmark problems showed the 
effectiveness of the new algorithm and illustrate the successful result in finding a Pareto optimal 
set. The following are the significant contributions. 

 The present work addressed an important task of combining TR with PSO to not find a single 
optimal solution, but to find a set of nondominated solutions 

 Using the randomicity PSO and the high efficiency of TR method, can overcome the limitation 
of TR method and solve efficiently a class of MOOPs 

 The proposed algorithm does not have any restrictions on the number of the Pareto optimal 
solutions found; where it keeps track of all the feasible solutions found during the optimization 

 The proposed approach can be solve nonconvex MOOPs but cannot be generate all Pareto 
points on the frontier 

 The numerical results reveal that the proposed approach can generate well-distributed sets 
of Pareto points very efficiently and is thus very suitable for engineering MOOPs and has good 
application value 

 Using the GD criterion show that the proposed algorithm give good approximation of the Pareto 
optimal solution. 
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 When the initial repository has less than 3 Pareto solutions, the good result couldn't be 
expected and If the initial Pareto solutions saved in repository have good diversity, then this 
algorithm have a better results 

Further research will concentrate on the possibilities to extend the proposed technique to deal 
more nonconvex MOOPs by using another method (i.e., hybrid method) for converting MOOP to 
SOOP. 
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