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1 Introduction  

In recent years free movement of capital causes the prices of financial assets to become more 

dependent upon euphoria and panic investors. For all participants of financial markets it results in 

accepting a high risk of losses. The key issue in these circumstances is the correct measurement 

of an investment risk. The most common measure of the market risk is Value at Risk (VaR). VaR 

indicates how big is the maximum loss over target horizon such that there is a low, pre-specified 

probability that the actual loss will be larger. The main practical problem is the choice of appropriate 

method for measuring Value at Risk. The most popular and the simplest method is a historical 

simulation or variance-covariance method. When financial markets become violate and extreme 

returns appear, no method is able to measure risk appropriately.  

 Extreme Value Theory (EVT) provides a theoretical and practical foundation on statistical 

models describing extreme events. There is extensive literature that focus on EVT and discuss the 

tail behaviour of assets (Loretan and Phillips, 1994; Daníelsson and De Vries, 1997; McNeil, 1999; 

Neftci, 2000; Longin, 2000; Diebold, Schuermann and Stroughair, 2000; Jondeau and Rockinger, 

2003; Fernandez, 2005; Gilli and Kellezi, 2006). EVT models deal with an iid time series, for that 

purpose McNeil and Frey (2000) build the combination of Extreme Value Theory and GARCH 

methodology called Conditional EVT or GARCH-EVT to capture the most important stylized facts 

with return data, as a volatility clustering and leptokurtosis, and quickly adapt to recent market 

movements. Usage of EVT in empirical research requires to pre-specify threshold which separates 

tails of distribution from its middle part. The choice of the threshold is ambiguous and affects the 

results of risk estimations.  

This paper provides empirical study of conditional EVT. We analyse one day out-of-sample 

forecasts based on optimal tail selection algorithm of Caeiro and Gomes (2016). Unlike other 

studies we update the optimal fraction of the tail for each VaR forecast. In this way we can estimate 

the risk with the newest time horizon. We hypothesize that the optimal choice of tail fraction allows 

to improve the accuracy of VaR prediction. We analyze ten U.S. blue chips and  present results for 

a long and a short position.  

The remainder of the paper is organized as follows. Section 2 provides Peaks Over Threshold 

(POT) methodology. Section 3 describes tail selection problem in POT model. Section 4 explains 

the conditional VaR model.  Section 5 describes backtesting tests. Section 6 presents empirical 

results for VaR forecasting. Section 7 concludes the study. 

2 Modelling tails using EVT   

Peaks Over Threshold, beside Block Maxima Model (BMM), is one of two key models of Extreme 

Value Theory. It allows to model the tail regions of the distribution instead of the entire sample. The 

Pickands-Balkema-de Haan Theorem (Balkema and de Haan, 1974) states, that for a high 

threshold u the distribution function 𝐹𝑢 defined as: 

𝐹𝑢(𝑦) = 𝑃(𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢) =
𝐹(𝑦+𝑢)−𝐹(𝑢)

1−𝐹(𝑢)
  for 0 < 𝑦 < 𝑥0 − 𝑢,                         (1) 

converges to the Generalized Pareto Distribution as 𝑢 → 𝑥0, for the right endpoint 𝑥0 ≤ ∞ of F. GPD 

is given by: 
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𝐺𝜉,𝛽(𝑦) = {
1 − (1 + 𝜉

𝑦


)

−
1

𝜉
,                 𝜉 ≠ 0,

1 − exp (−
𝑦

𝛽
) ,                    𝜉 = 0,

                                    (2) 

where 𝛽 > 0, 𝑦 ≥ 0 for 𝜉 ≥ 0 and 0 ≤ 𝑦 ≤ −𝛽/𝜉 for 𝜉 < 0. The distribution has only two parameters, 

𝛽 is a scale parameter and 𝜉 is a shape parameter. Heavy tail distributions (i.e. stable, Student’s t) 

have 𝜉 > 0 (Fréchet domain of attraction), whereas thin tail distributions like normal and log-normal 

have 𝜉 = 0 (Gumbel domain of attraction). Distributions with finite right endpoint have 𝜉 < 0 (Weibull 

domain of attraction). Rearranging  (1)–(2) we obtain cumulative distribution function of returns: 

𝐹(𝑥) = (1 − 𝐹(𝑢))𝐺𝜉,𝛽(𝑦)(𝑥 − 𝑢) + 𝐹(𝑢),    𝑥 > 𝑢.                             (3) 

To obtain useful closed form of distribution (3) it is convenient to replace 𝐹(𝑢) by the empirical 

estimator of exceedance over a threshold. The estimator is of the form 𝐹̂(𝑢) = 1 −  𝑁𝑢/𝑛, where 

 𝑁𝑢 is a number of returns that exceed the threshold u and n is number of returns. The estimator of 

cumulative distribution F is then as follows: 

𝐹̂(𝑥) = 1 −
𝑁𝑢

𝑛
(1 + 𝜉

(𝑥−𝑢)

𝛽
)

−
1

𝜉
.                                              (4) 

VaR for a short position is given by the 𝑥 value in equation (4) and we receive: 

𝑉𝑎𝑅𝑞 = 𝑢 +
𝛽

𝜉
((

𝑛

𝑁𝑢
(1 − 𝑞))

−𝜉
− 1),                                        (5) 

where 𝑞 is the confidence level of VaR. In order to calculate VaR for a long position it is needed to 

carry out the calculations for minus returns.  

3 Tail selection 

The appropriate choice of threshold level u is crucial in the estimation of Generalized Pareto 

Distribution parameters and the corresponding accuracy of Value-at-Risk. The standard practice is 

to adopt as low a threshold as possible but there is a trade-off between variance and bias. If a 

threshold is too low, the asymptotic basis of the model is violated leading to high bias. However, 

too high a threshold generates not enough excesses with which the model is estimated leading to 

high variance (Coles, 2001). Traditional ways for the choice of a threshold are based on graphical 

representations. An often used procedure is the analysis of a mean residual life plot which 

represents the mean of the excesses of the threshold u. This method is used by Aboura (2014), 

Omari, Mwita and Waititu (2017) to estimate VaR based on GARCH-EVT approach. Another very 

popular procedure to threshold selection is graphical representation of Hill (Hill, 1975), Pickands 

(Pickands, 1975) or Dekkers-Einmahl-de Haan estimators (Dekkers, Einmahl and Haan, 1989). 

The graphical based threshold choice procedures require to find stable regions in the graphs and 

thus they are highly subjective. Some authors chose threshold as a fixed quantile of the data set, 

especially when they use a moving window of observation to find out-of-sample VaR estimates. For 

instance Soltane, Karaa and Bellalah (2012) use a correction to Hill estimator and estimate GPD 

parameters in GARCH-EVT model keeping them constant for half a year of data in backtesting 

procedure. McNeil and Frey (2000), Karmakar and Shukla (2015), Bee at.al. (2016), Totić and 

Božović (2016), Li (2017) choose 90th quantile of the loss distribution as a threshold whereas Cifter 

(2011) uses 95th quantile.  

There is extensive literature proposing the optimal choice of threshold, corresponding to the 

application of automated methods. The most common methods of adaptive choice of the threshold 
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are based on the minimization of MSE’s estimates (e.g. Hall, 1982; Hall and Welsh, 1985; 

Danielsson at al., 2001; Gomes and Oliveira, 2012). A recent overview of the topic can be found in 

(Danielsson at al., 2016).  

In our empirical study we use an algorithm described in (Caeiro and Gomes, 2016). The 

algorithm searches for a stable region of the path stability (PS), i.e. the Hill plot of a tail index with 

respect to k. This is done in following steps: 

Step 1. Given an observed returns (𝑟1, … , 𝑟𝑛), compute 𝑇(𝑘) ≔ 𝜉𝑘,𝑛 using Hill estimator for 𝑘 =

1, … , 𝑛 − 1. 

Step 2. Obtain 𝑗0 as a minimum value of j, a non-negative integer, such that the rounded values, to 

j decimal places (𝑗 = 1 here), of the estimates 𝑇(𝑘) are distinct. Define 𝑎𝑘
(𝑇)

(𝑗) =

𝑟𝑜𝑢𝑛𝑑 (𝑇(𝑘), 𝑗), 𝑘 = 1, … , 𝑛 − 1, the rounded values of 𝑇(𝑘) to j  decimal places. 

Step 3. Consider the set of k values associated to equal consecutive values of 𝑎𝑘
(𝑇)(𝑗0) obtained in 

step 2. Set 𝑘𝑚𝑖𝑛
(𝑇)

 and  𝑘𝑚𝑎𝑥
(𝑇)

 the minimum and maximum values, respectively, of the set with 

the largest range. The largest run size is 𝑙: =  𝑘𝑚𝑎𝑥
(𝑇)

− 𝑘𝑚𝑖𝑛
(𝑇)

. 

Step 4. Consider all those estimates,  𝑇(𝑘), 𝑘𝑚𝑖𝑛
(𝑇)

≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥
(𝑇)

, now with two additional decimal 

places, i.e. compute 𝑇(𝑘) = 𝑎𝑘
(𝑇)

(𝑗0 + 2). Obtain the mode of 𝑇(𝑘) and denote 𝒦𝑇 the set of 

k- values associated with this mode. 

Step 5. Take 𝑘̂𝑇 as the maximum value of 𝒦𝑇. 

Step 6. Compute 𝜉𝑃𝑆 = 𝜉𝑘̂𝑇,𝑛.  

4 GARCH-EVT model   

The GARCH-EVT model is a concept of McNeil and Frey (McNeil and Frey, 2000) to VaR modelling 

by extending the EVT framework to dependent data. It is a two-step procedure. First the GARCH 

model is fitted to returns using pseudo maximum likelihood approach. The standardized residuals 

of this model are extracted. If specified model is correct, the residuals of the model should be 

realizations of the unobserved iid noise variables. There are a lot of various variants of GARCH 

models. In this paper we use the most popular GARCH(1,1) (Bollerslev, 1986): 

𝑡
2 =  + 𝑟𝑡−1

2 + 𝑡−1
2 ,                                           (6) 

where ,, > 0, +  < 1. The high value of  parameter implies that volatility is persistent and 

takes a long time to change. The high value of   means quick reaction of volatility to market 

movements.  In the second stage a GPD parameters are fitted to standardized residuals 𝑒𝑡 of the 

GARCH model. VaR for short position (right tail) is calculated using the following expression:  

𝑉𝑎𝑅𝑞(𝑟𝑡) = 𝑡(1)𝑉𝑎𝑅𝑞(𝑒𝑡),                                          (7) 

where 𝑡(1) is one step ahead prediction of next period scale parameter in GARCH type model 

and 𝑉𝑎𝑅𝑞(𝑒𝑡) is calculated from (5) but for the standardized residuals 𝑒𝑡 of GARCH model. 

5 Backtesting tests  

Evaluation of the quality of VaR estimates can be made using backtesting procedure. The most 

popular backtest is the proportion of failures Kupiec's test (Kupiec, 1995). In this test the null 

hypothesis takes the following form: the observed number of exceedances is appropriate compared 

to the expected . The test statistic has the following form:  
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𝐿𝑅_𝑈𝐶 = 2 (ln ((
𝑇1

𝑇0+𝑇1
)

𝑇1
(1 −

𝑇1

𝑇0+𝑇1
)

𝑇0
) − ln(𝑇1(1 − )𝑇0)),                  (8) 

where: 𝑇1 – the number of VaR exceedances, 𝑇0–  the number of unexceeded VaR. 

With the true null hypothesis LR_UC statistic has the asymptotic chi-square distribution with one 

degree of freedom.  

The Kupiec’s test measures only the number of exceptions and ignores the time dynamics of 

exceedances. A good backtesting model should check also the independence property of 

exceedances. Christoffersen’s test (Christoffersen, 1998) additionally checks independence of 

exceedances. If the model is accurate, then an exception today should not depend on whether or 

not an exception occurred on the previous day. The null hypothesis is: exceedances' percentage is 

consistent compared to the expected  and the exceedances are independent over time.  The test 

statistic is of the form: 

𝐿𝑅_𝐶𝐶 = 2ln ((
𝑇01

𝑇01+𝑇00
)

𝑇01
(1 −

𝑇01

𝑇01+𝑇00
)

𝑇00
(

𝑇11

𝑇10+𝑇11
)

𝑇11
(1 −

𝑇11

𝑇10+𝑇11
)

𝑇10
) +  

−2ln(𝑇01+𝑇11(1 − )𝑇00+𝑇10),                                                    (9) 

where 𝑇𝑖𝑗 – the number of days when condition 𝑗 occurred assuming that condition 𝑖 occurred on the 

previous day (1 if violation accurs, 0 if no violation accurs). 

With the true null hypothesis LR_CC statistic has the asymptotic chi-square distribution with two 

degrees of freedom. 

6 Empirical findings 

To test the forecasting performance of the examined GARCH-EVT model with different choices of 

threshold we choose ten U.S. stocks as a base for analysis. They are constituents of the Dow Jones 

Index. Air Products & Chemicals and Freeport-McMoRan are a members of the Basic Materials 

sector, Boeing and General Electric are from Industrial sector, EOG Recourses and Exxon Mobil 

Corporation belong to Oil&Gas sector, Alphabet and Intel are members of the Technology sector 

and JPMorgan Chase & Co. and Goldman Sachs Group are from Financial sector. The data 

consists of daily prices of the chosen assets from the beginning of 2005 up to the end of March 

2018. It gives 3332 log-returns which are used in our calculations. Using rolling windows of size of 

750 returns we update the estimates of parameters for each moving window.  

According to the GARCH-EVT approach the tail fraction is estimated for standardized 

residuals of the GARCH model, not for returns. We used a GARCH(1,1) model with Gaussian 

innovations. Then we calculate tail fraction in three cases i.e. using optimal tail selection method of 

Caeiro and Gomes (2016), the 90th and 95th quantile of a data set. For all considered models, we 

allow the tail fraction and the model parameters to change over time. Figure 1 shows an example 

of tail behaviour for Alphabet Inc. It is easy to notice that that optimal tail is estimated to be much 

nearer to the 90th than the 95th quantile. For the remaining stocks (not presented here) we receive 

the similar results. Such choice of threshold guarantees enough data in tail to calculate VaR 

estimates at standard confidence levels. We tried also to use the optimal tail selection method of 

Danielsson et al. (2016). Unfortunately, this method generates optimal tails at a very high level and 

not enough data to calculate VaR at a high confidence level is available.  
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Figure 1: Threshold in POT model for lower and upper tail. Black line – optimal tail, dark grey 

line – 95th quantile, light grey line – 90th quantile of standardized residuals of  GARCH (1,1) model 

for Alphabet returns. 

 

Source: own calculations 

 

Having specified tails of distribution the next step in calculations is to estimate GDP 

parameters. The log-likelihood method is used which is described in Coles (2001). Figure 2 

presents shape parameter behaviour for the example of Alphabet Inc. Since threshold based on 

optimal choice is near the 90th quantile we could expect shape parameters for these tail choices to 

behave similarly. Interestingly shape parameters are almost always positive. It means that residuals 

of the GARCH model do not follow Gaussian distribution and still have fat tails.  

The final step of analysis is calculate VaR forecasts. We examine the out-of-sample 99.9%,  

99% and 95% VaR estimates for left and right tails of returns distribution. The Figure 3 presents 

99% VaR estimates calculated from an optimal tail selection model for the Alphabet Inc.  
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Figure 2: Shape parameter for upper tail (upper panel) and lower tail (lower panel) 

calculated  for standardized residuals of GARCH (1,1) model for Alphabet returns. Black 

line – optimal tail, dark grey line – 95th quantile, light grey line – 90th quantile of standardized 

residuals. 

 

Source: own calculations 
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Figure 3: Value at Risk at 99% confidence level for Alphabet returns 

 

Source: own calculations 

 

Backtesting results for all stocks and three choices of threshold are summarized in Tables 1-3. 
Assessing the quality of the estimated VaR, based on Kupiec's test, it can be concluded that the 
worst results are obtained for highly extreme VaR i.e. at 99.9% confidence level. The model is 
rejected for three stocks indicating a substential underestimation of the tail risk. For remaining 
confidence levels all VaR predictions are accurate. Note, that the same results we obtain regardless 
of which method of threshold choice is used. The results of Christoffersen‘s test are the same for 
the optimal choice of threshold and for the 90th quantile of the sample. The test indicates, that a 
sequence of violations is time dependent and VaR forecasts are inappropriate for Freeport-
McMoRan Inc. at 99% confidence level and for JPMorgan Chase & Co. at 99% and 95% 
confidences. The three exceptions appear only for left tails of distribution (long position). For the 
right tails and for all stocks there is no significant reason to reject the null hypothesis of 
independence VaR exceedances over time. The worse tail performance is obtained for the model 
with 95% quantile as a threshold  which generates an additional two exceptions for right tail and 
99.9% confidence level. Summing up, the conditional EVT model turns out to have a very good 
coverage of extreme quantiles of the loss distribution for most stocks. We verify that the results 
obtained are robust to the tail fraction choices made. 
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Table 1: Backtesting for GARCH-EVT model with optimal tail selection. ET – expected number 

of exceedances, T1 – actual number of exceedances, UC_L – Kupiec’s test, CC_L – 

Christoffersen’s test. 

    Long position, 99.9% VaR Short position, 99.9% VaR  

Stock ET T1 UC_L CC_L T1 UC_L CC_L 

apd 2 5 1.775 (0.183) 1.794 (0.408) 5 1.775 (0.183) 1.794 (0.408) 

ba 2 3 0.064 (0.800) 0.071 (0.965) 5 1.775 (0.183) 1.794 (0.408) 

ge 2 5 1.775 (0.183) 1.794 (0.408) 3 0.064 (0.800) 0.071 (0.965) 

eog 2 4 0.666 (0.414) 0.679 (0.712) 7 *5.134 (0.023) 5.172 (0.075) 

fcx 2 3 0.064 (0.800) 0.071 (0.965) 6 3.287 (0.070) 3.315 (0.191) 

googl 2 6 3.287 (0.070) 3.315 (0.191) 5 1.775 (0.183) 1.794 (0.408) 

gs 2 7 *5.134 (0.023) 5.172 (0.075) 3 0.064 (0.800) 0.071 (0.965) 

intc 2 4 0.667 (0.414) 0.679 (0.712) 7 *5.134 (0.023) 5.142 (0.075) 

jpm 2 6 3.287 (0.070) 3.315 (0.191) 2 0.142 (0.706) 0.146 (0.930) 

xom 2 5 1.775 (0.183) 1.794 (0.408) 5 1.775 (0.183) 1.794 (0.408) 

    Long position, 99% VaR Short position, 99% VaR  

Stock ET T1 UC_L CC_L T1 UC_L CC_L 

apd 25 29 0.380 (0.537) 1.040 (0.595) 27 0.054 (0.817) 0.625 (0.731) 

ba 25 31 0.986 (0.321) 1.740 (0.419) 28 0.181 (0.671) 1.207 (0.547) 

ge 25 27 0.054 (0.817) 0.625 (0.732) 30 0.650 (0.420) 1.483 (0.476) 

eog 25 30 0.650 (0.420) 1.355 (0.508) 26 0.001 (0.972) 0.530 (0.767) 

fcx 25 25 0.027 (0.870) **10.253 (0.006) 28 0.181 (0.671) 0.795 (0.672) 

googl 25 24 0.132 (0.716) 0.583 (0.747) 21 0.971 (0.324) 1.315 (0.518) 

gs 25 26 0.001 (0.972) 1.248 (0.536) 28 0.181 (0.671) 0.795 (0.672) 

intc 25 23 0.323 (0.570) 0.737 (0.692) 30 0.650 (0.420) 1.355 (0.508) 

jpm 25 26 0.001 (0.972) **9.763 (0.008) 30 0.650 (0.420) 1.355 (0.508) 

xom 25 29  0.380 (0.537) 1.040 (0.595) 32 1.388 (0.239) 2.192 (0.334) 

    Long position, 95% VaR Short position, 95% VaR  

Stock ET T1 UC_L CC_L T1 UC_L CC_L 

apd 129 136 0.381 (0.537) 0.537 (0.647) 115 1.68 (0.195) 1.684 (0.431) 

ba 129 133 0.123 (0.726) 2.522 (0.284) 127 0.036 (0.849) 0.539 (0.764) 

ge 129 142 1.316 (0.251) 2.626 (0.269) 124 0.215 (0.643) 1.009 (0.604) 

eog 129 123 0.308 (0.579) 2.155 (0.341) 120 0.691 (0.406) 0.725 (0.696) 

fcx 129 129 0,000 (0.993) 0.388 (0.824) 136 0.382 (0.537) 3.697 (0.157) 

googl 129 131 0.029 (0.864) 0.869 (0.648) 116 1.446 (0.229) 1.456 (0.483) 

gs 129 132 0.068 (0.794) 0.164 (0.921) 125 0.138 (0.710) 0.353 (0.838) 

intc 129 114 0.944 (0.331) 1.220 (0.543) 133 0.123 (0.726) 1.607 (0.448) 

jpm 129 113 2.202 (0.138) **14.819 (0.006) 110 3.125 (0.077) 3.240 (0.198) 

xom 129 139 0.780 (0.377) 2.414 (0.299) 129 0000 (0.993) 0.280 (0.986) 

Note: statistical significance level * for p<0.05, ** for p<0.01 (p-values in parentheses). 

Source: own calculations 
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Table 2: Backtesting for GARCH-EVT model with 95th quantile for tail selection. ET – 

expected number of exceedances, T1 – actual number of exceedances, UC_L – Kupiec’s test, 

CC_L – Christoffersen’s test. 

    Long position, 99.9% VaR Short position, 99.9% VaR  

Stock ET T1 UC_L CC_L T1 UC_L CC_L 

apd 2 5 1.775 (0.183) 1.794 (0.408) 4 0.666 (0.414) 0.679 (0.712) 

ba 2 6 3.287 (0.070) 3.315 (0.191) 4 0.666 (0.414) 0.679 (0.712) 

ge 2 6 3.287 (0.070) 3.315 (0.191) 3 0.064 (0.800) 0.071 (0.965) 

eog 2 6 3.287 (0.070) 3.315 (0.191) 8 **7.269 (0.007) *7.319 (0.026) 

fcx 2 4 0.666 (0.414) 0.679 (0.712) 6 3.287 (0.070) 3.315 (0.191) 

googl 2 5 1.775 (0.183) 1.794 (0.408) 5 1.775 (0.183) 1.794 (0.408) 

gs 2 7 *5.134 (0.023) 5.172 (0.075) 3 0.064 (0.800) 0.071 (0.965) 

intc 2 5 1.775 (0.183) 1.794 (0.408) 8 **7.269 (0.007) *7.319 (0.026) 

jpm 2 6 3.287 (0.070) 3.315 (0.191) 5 1.775 (0.183) 1.794 (0.408) 

xom 2 5 1.775 (0.183) 1.794 (0.408) 5 1.775 (0.183) 1.794 (0.408) 

    Long position, 99% VaR Short position, 99% VaR  

Stock ET T1 UC_L CC_L T1 UC_L CC_L 

apd 25 32 1.388 (0.239) 2.192 (0.334) 26 0.001 (0.972) 0.767 (0.536) 

ba 25 30 0.650 (0.420) 1.355 (0.508) 28 0.181 (0.671) 1.207 (0.547) 

ge 25 31 0.986 (0.321) 1.733 (0.420) 29  0.380 (0.537) 1.040 (0.595) 

eog 25 30 0.650 (0.420) 1.355 (0.508) 28 0.181 (0.671) 0.795 (0.672) 

fcx 25 27 0.054 (0.817) **9.371 (0.009) 29  0.380 (0.537) 1.040 (0.595) 

googl 25 26 0.001 (0.972) 0.530 (0.767) 23 0.323 (0.570) 0.737 (0.692) 

gs 25 29  0.380 (0.537) 1.307 (0.520) 27 0.054 (0.817) 0.625 (0.731) 

intc 25 25 0.027 (0.870) 0.516 (0.773) 32 1.388 (0.239) 2.192 (0.334) 

jpm 25 29  0.380 (0.537) *8.870 (0.011) 27 0.054 (0.817) 0.625 (0.731) 

xom 25 30 0.650 (0.420) 1.483 (0.476) 28 0.181 (0.671) 0.795 (0.672) 

    Long position, 95% VaR Short position, 95% VaR  

Stock ET T1 UC_L CC_L T1 UC_L CC_L 

apd 129 133 0.123 (0.726) 0.810 (0.667) 119 0.853 (0.356) 0.902 (0.637) 

ba 129 129 0.000 (0.993) 2.999 (0.223) 126 0.079 (0.779) 0.645 (0.724) 

ge 129 142 1.316 (0.251) 2.626 (0.269) 125 0.138 (0.710) 0.353 (0.838) 

eog 129 125 0.138 (0.710) 1.003 (0.606) 117 1.231 (0.267) 1.250 (0.535) 

fcx 129 130  0.007 (0.935) 0.929 (0.629) 132 0.068 (0.794) 2.932 (0.231) 

googl 129 128 0.010 (0.921) 0.082 (0.960) 115 1.680 (0.195) 1.684 (0.431) 

gs 129 134 0.193 (0.660) 0.194 (0.908) 124 0.215 (0.643) 0.393 (0.821) 

intc 129 137 0.499 (0.480) 1.533 (0.465) 136 0.382 (0.537) 3.697 (0.157) 

jpm 129 115 1.680 (0.195) **13.579 (0.001) 117 1.231 (0.267) 1.612 (0.447) 

xom 129 125 0.138 (0.710)  2.555 (0.279) 133 0.123 (0.726) 0.232 (0.891) 

Note: statistical significance level * for p<0.05, ** for p<0.01 (p-values in parentheses). 

Source: own calculations 
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Table 3: Backtesting for GARCH-EVT model with 90th quantile for tail selection. ET – 

expected number of exceedances, T1 – actual number of exceedances, UC_L – Kupiec’s test, 

CC_L – Christoffersen’s test. 

    Long position, 99.9% VaR Short position, 99.9% VaR  

Stock ET T1 UC_L CC_L T1 UC_L CC_L 

apd 2 5 1.775 (0.183) 1.794 (0.408) 4 0.666 (0.414) 0.679 (0.712) 

ba 2 4 0.666 (0.414) 0.679 (0.712) 5 1.775 (0.183) 1.794 (0.408) 

ge 2 4 0.666 (0.414) 0.679 (0.712) 7 *5.134 (0.023) 5.172 (0.075) 

eog 2 4 0.666 (0.414) 0.679 (0.712) 6 3.287 (0.070) 3.315 (0.191) 

fcx 2 6 3.287 (0.070) 3.315 (0.191) 3 0.064 (0.800) 0.071 (0.965) 

googl 2 7 *5.134 (0.023) 5.172 (0.075) 5 1.775 (0.183) 1.794 (0.408) 

gs 2 7 *5.134 (0.023) 5.172 (0.075) 3 0.064 (0.800) 0.071 (0.965) 

intc 2 5 1.775 (0.183) 1.794 (0.408) 6 3.287 (0.070) 3.315 (0.191) 

jpm 2 6 3.287 (0.070) 3.315 (0.191) 3 0.064 (0.800) 0.071 (0.965) 

xom 2 5 1.775 (0.183) 1.794 (0.408) 4 0.666 (0.414) 0.679 (0.712) 

    Long position, 99% VaR Short position, 99% VaR  

Stock ET T1 UC_L CC_L T1 UC_L CC_L 

apd 25 28 0.181 (0.671) 0.795 (0.672) 26 0.001 (0.972) 0.530 (0.767) 

ba 25 31 0.986 (0.321) 1.740 (0.419) 28 0.181 (0.671) 1.207 (0.547) 

ge 25 30 0.650 (0.420) 1.355 (0.508) 27 0.054 (0.817) 0.625 (0.731) 

eog 25 25 0.027 (0.870) **10.253 (0.006) 28 0.181 (0.671) 0.795 (0.672) 

fcx 25 27 0.054 (0.817) 0.625 (0.732) 28 0.181 (0.671) 1.207 (0.547) 

googl 25 25 0.027 (0.870) 0.516 (0.773) 20 1.437 (0.231) 1.749 (0.417) 

gs 25 25 0.027 (0.870) 1.394  (0.498) 29  0.380 (0.537) 1.040 (0.595) 

intc 25 22 0.601 (0.438) 0.979 (0.613) 29  0.380 (0.537) 1.040 (0.595) 

jpm 25 27 0.054 (0.817) **9.371 (0.009) 29  0.380 (0.537) 1.040 (0.595) 

xom 25 29  0.380 (0.537) 1.307(0.520) 33 1.854 (0.173) 2.709 (0.258) 

    Long position, 95% VaR Short position, 95% VaR  

Stock ET T1 UC_L CC_L T1 UC_L CC_L 

apd 129 134 0.193 (0.660) 0.810 (0.667) 120 0.691 (0.406) 0.759 (0.684) 

ba 129 131 0.029 (0.864) 2.719 (0.257) 130  0.007 (0.935) 0.342 (0.843) 

ge 129 123 0.308 (0.579) 2.155 (0.341) 120 0.691 (0.406) 0.725 (0.696) 

eog 129 131 0.029 (0.864) 0.050 (0.976) 135 0.271 (0.597) 3.463 (0.177) 

fcx 129 143 1.525 (0.217) 2.735 (0.255) 122 0.418 (0.518) 0.536 (0.765) 

googl 129 131 0.029 (0.864) 0.869 (0.648) 119 0.853 (0.356) 0.902 (0.637) 

gs 129 133 0.123 (0.726) 0.246 (0.884) 122 0.418 (0.518) 0.536 (0.765) 

intc 129 136 0.382 (0.537) 0.869 (0.648) 134 0.193 (0.660) 1.772 (0.412) 

jpm 129 116 1.447 (0.229) **15.400 (0.000) 109 3.470 (0.062) 3.560 (0.169) 

xom 129 131 0.029 (0.864) 1.677 (0.432) 131 0.029 (0.864) 0.056 (0.972) 

Note: statistical significance level * for p<0.05, ** for p<0.01 (p-values in parentheses). 

Source: own calculations 
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7 Conclusions 

The selection of an appropriate tail fraction of distribution in one of the main problems in usage of 

Peaks Over Threshold method in practice. POT offers methodology for extreme risk measurement 

but it is highly dependent on the threshold which indicates the tail of distribution. The main 

contribution of this paper is to conduct a comparative study of predictive ability of VaR estimates 

when each estimate is made with optimal choice of distribution tail. The GARCH-EVT model is used 

because it is able to capture stylized facts, like heteroscedasticity and fat tails, about empirical 

returns. We compared the results to VaR estimates with fixed quantile (95th, 99th and 99.9th) of 

distribution as a threshold. Such choices of threshold are seen as standard in conditional EVT 

approach. GARCH-EVT model performs pretty well in estimating risk for all choices of threshold. 

Backtesting procedures indicate that no matter how the choice of the tail is taken, approximately  

the same accuracy of VaR prediction we receive. This conclusion presents a real dilemma to the 

importance of appropriate choice of a threshold. We find that the optimal tail selection does not 

improve accuracy of the VaR prediction relative to standard methods of choice of tail fraction and 

hence our research hypothesis is not confirmed. From a practical point of view the result means 

that investors may calculate conditional VaR using GARCH-EVT approach without reflection on 

distribution tails. Taking 5th percentile of the sample as a threshold value is sufficient to obtain 

accurate estimation of VaR. 
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