
10 September 2018, 10th Economics & Finance Conference, Rome ISBN 978-80-87927-77-9, IISES

DOI: 10.20472/EFC.2018.010.003

ANDRÁS BEBES
Government Debt Management Agency Pte. Ltd., Hungary

DÁVID TRAN
Government Debt Management Agency Pte. Ltd., Hungary

LÁSZLÓ BEBESI
UniCredit Hungary, Hungary

OPTIMIZING THE HUNGARIAN GOVERNMENT DEBT PORTFOLIO

Abstract:
We construct an optimal debt portfolio model with the purpose of optimizing the Hungarian
government debt portfolio. To analyze the characteristics of the costs and corresponding risk factors
of the Hungarian debt portfolio we simulate issuances of chosen instruments on a specified time
horizon. We apply a multiobjective optimization scheme to construct compositions of financing that
minimize the costs and risks of the debt portfolio. Our purpose is to find the set of Pareto-optimal
solutions that minimize expected costs, volatility of costs and refinancing risks while maximizing
average time to re-fixing. The results of the multiobjective optimization can be used to help in
constructing a medium term debt management strategy.

Keywords:
Multiobjectiove Optimization, Portfolio Optimization, Government Debt Management

JEL Classification: C61, G17, H63

47http://www.iises.net/proceedings/10th-economics-finance-conference-rome/front-page

https://doi.org/10.20472/EFC.2018.010.003


 
 

1 Introduction 

In this paper we construct an optimal debt portfolio model with the purpose of optimizing 

the Hungarian government debt portfolio. The main objective of government debt 

management is to create a structure of financing that minimizes costs while keeping risks 

at an acceptable level. These two goals are contradictory as lower costs can usually be 

achieved only by taking on higher risks. Therefore, a single optimal debt portfolio does 

not exist. However, we can aim to attain a set of Pareto-optimal solutions that can be 

considered by the debt manager as feasible alternatives. 

Consequently, the purpose of the model is to help the Hungarian Government Debt 

Management Agency in creating a medium term (5 years) debt management 

strategy.Several countries have developed stochastic optimal portfolio models for debt 

management purposes. Notable examples include Canada (Bolder and Deeley, 2011), 

Italy (Adamo et al., 2004; Consiglio and Staino, 2012), Sweden (Bergström et al., 2002), 

Turkey (Balibek and Memis, 2012) and the United Kingdom (Pick and Anthony, 2006). 

In order to contribute to the decision making process, our model needs to predict the 

costs and risks associated with any given financing structure on a 5-year horizon (2018-

2022). This requires us to price all outstanding government debt instruments as well as 

those to be issued in the future. We use the results obtained using our Markov regime 

switching state-space model (Bebes et al., 2018)for this purpose.As we intend to 

minimize costs and risks, we use an evolutionary multiobjective optimization algorithm to 

find Pareto-optimal solutions. Like traditional optimization methods, a number of iterations 

(repeated calculations of the objective function) is required to reach an optimum. 

However, contrary to conventional methods, we use a large set of inputs at every iteration 

instead of a single point or vector in order to obtain a set of Pareto-optimal solutions. 

The structure of this paper is as follows: Section 2 introduces the factual and forecasted 

data that provide the background for optimization. This includes the results of the Markov 

regime switching state-space Model (Bebes et al., 2018), the outstanding government 

debt portfolio and the specifications of debt instruments to be issued in the future. Section 

3 and 4 deals with the various cost and risk metrics employed in the objective function of 

the optimization. Section 5 gives an overview of the optimization procedure including the 

objective function, the optimization algorithm and the simulated debt issuance.Section 6 

details the results of the optimization, presenting optimal financing structure and cost-risk 

frontier results.Section 7 concludes. 

2 Data 

In this section we provide insight to the specifics of our data that we use for our optimal 

portfolio model.It is driven by the Markov regime switching state-space model developed 

by Bebes, Tran and Bebesi (2018). 
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2.1 The Markov regime switching state-space model and forecast results 

As detailed in (Bebes et al., 2018) our historical dataset includes monthly Hungarian and 

Euro area yield curve points, Hungarian CDS spread curve points.It also includes 

Hungarian and Eurozone CPI as well as EUR/HUF exchange rate data from October 

2008 to December 2017 for a total of 𝑛 = 111 observations, giving us roughly 10 years of 

historical data. 

For the optimal portfolio model we need a forecast of our underlying factors between the 

2018-2022 5-year timeframe. The state-space representation of our model can be written 

as 

𝑌𝑡 = 𝐻𝑡𝑋𝑡
′ + 𝜃𝑡 , 

𝑋𝑡+1 = 𝜇𝑆𝑡
+ 𝑋𝑡𝐹𝑆𝑡

+ 𝜀𝑡, 

[
𝜃𝑡

𝜀𝑡
′] ~𝑁 (0, (

𝑅𝑆𝑡
0

0 𝑄𝑆𝑡

)), 

where 𝑌𝑡 denotes the vector of observations, while 𝑋𝑡 contains the unobserved state 

variables, our factors at time 𝑡. 𝑆𝑡 denotes an unobserved, discrete-valued 2-state 

Markov-switching variable. Our prior assumption is that the economy switches between 

two regimes. One represents economic stability or growth, while the other represents a 

crisis period. 

Figure 1: Fan charts of selected yields, CDS spreads, CPI rates and exchange rates with 5-
95% confidence intervals 

 
Source: 5-year forecasts based on fitting results (Bebes et al., 2018) 
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For a more detailed description of the underlying Markov regime switching state-space 

model, and the fitting of the model please refer to (Bebes et al., 2018). 

Figure 1 shows our forecast of the main yield curve points and macro factors. The 

Hungarian short rate is expected to rise slowly to the 1% level, while long rates are also 

predicted to rise. According to our forecast, Euro area rates are mostly expected to 

stagnate, with the exception of the short rate converging to zero. The overall volatility is 

expected to be low. The fan charts also show that risks leading to the depreciation of the 

HUF as well as risks of higher interest rates are significantly higher than vice versa. CDS 

spreads in particular are especially vulnerable and can top 500bps in a crisis situation. 

2.2 Issuance characteristics 

To analyze the characteristics of the costs and corresponding risk factors of the 

Hungarian debt portfolio we simulate issuances of chosen instruments on the specified 

time horizon. We categorize all portfolio instruments into three separate groups, namely 

the wholesale, the FX, and the retail debt. There are several model instruments to choose 

from in each market segment: 

1) Wholesale segment: 

• 3-, 5- and 10-year fixed interest rate Government Bonds 

• 5-year floating interest rate Government Bond 

• 12-month Discount Treasury Bill 

2) FX segment: 

• 5- and 10-year fixed and floating interest rate, Euro denominated Bonds 

3) Retail segment: 

• 1-year Hungarian Government Security 

• Premium and Bonus Hungarian Government Securities 

All model instruments share the same characteristics and properties as those issued by 

the Hungarian DMO. The range of model instruments can be easily changed by adding or 

removing instrument types. 

The share of each retail instrumentin the retail segment is fixed at the starting share for 

the time horizon. The premia of the retail debt instruments are connected to the level of 

the short rate at every trajectory. It is assumed, that retail investors expect a higher 

premium when the short rate is at a low level. A higher debt-renewal willingness is also 

assumed for the retail segment based on the DMO’s experience. 

In the model Government Bonds are issued quarterly, with the opportunity of a monthly 

reopening, while Treasury Bills are issued each month. FX Bonds are issued yearly with 
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a trajectory dependent choice for the issuance month1, and are not reopened. Retail 

instruments (except the 1-year Hungarian Government Security, which is issued every 

month) are issued at the start of every calendar year, with the opportunity of a monthly 

reopening. 

The initial portfolio to start the simulation is identical to the actual government debt 

portfolio, with the exception that all actual instruments are listed as one of the above 

model instruments. Thus, the model is able to generate accurate and realistic results that 

can be used directly to set benchmarks for the government debt. 

3 Cost factors 

Cost factors can be divided into 4 groups. The most prominent cost factor is the interest 

expenditure, which is the cumulated sum of the coupon payments of all instruments.The 

second cost factor is the issuance price discount or premium (loss or gain). Treasury Bills 

do not pay coupons whereasall other instruments are issued exactly at, or closely toparin 

the model.The third cost factor is the currency cost, which boils down from the deviation 

of the EUR/HUF exchange rate. In accordance with the strategic goal of the Hungarian 

DMO, all foreign liabilities are either issued in, or swapped into Euro. The model 

calculates all costs in HUF (based on Hungarian accounting rules), therefore currency 

cost is a key factor in determining the optimal share of FX debt in the portfolio.The fourth 

cost factor is the so-called liquidity premium, which ariseswhen excessive issuance of 

government bonds or treasury bills is needed to fulfill the financing requirements.We 

address this issue in Section 4.3. 

We call a series of random numbers substituted into the transition equation of our model 

a trajectory. A financing composition is a weighting of the model instruments, summing to 

1, while aiming for the theoretical composition of the portfolio, as time 𝑡 → ∞. 

All costs are aggregated in HUF over the time horizon on every trajectory using accrual 

accounting. Such time-proportional accounting applies for all coupon payment dates in 

the timeframe, for all instruments. Smoothing the costs on the time horizon makes the 

financing compositions (and different time horizons) comparable to each other. It also 

mitigates the importance of whether a payment date is before or after the model’s 

timeframe. 

If all the simulated trajectories are taken into account, we get the stochastic distribution of 

the costs. We call the expected cost of the stochastic distribution of the cumulated costs 

the cost of the specific financing composition. 

                                                           
1 In practice, the Government Debt Management Agency has a degree of freedom in deciding when to issue FX debt. 

This is modeled by a single issuance per calendar year. In the model, FX debt is issued in the first month where the 

level of Euro area yield curve declines for two months in a row, or in December if the criterion is not met throughout a 

given calendar year. 
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4 Risk factors 

To measure the risks rising from the volatility of the yield curve, we calculate the standard 

deviation, the Cost-at-Risk and the Conditional Cost-at-Risk at different confidence levels 

on the stochastic distribution of costs (basically an implementation of the Monte Carlo 

simulation for calculating VaR or CVaR).The corrected sample standard deviation is well 

known. Let 𝑐1,𝑠 ≤ 𝑐2,𝑠 ≤ ⋯ ≤ 𝑐𝑟,𝑠 denote the ordered costs of 𝑟 trajectories based on 𝑠 

financing composition, then we calculate the Cost-at-Risk at0 < 𝛼 < 100 confidence level 

𝐶𝑎𝑅𝛼(𝑠) = 𝑐
⌊𝑟

𝛼

100
⌋
, 

while the Conditional Cost-at-Risk at0 < 𝛼 < 100 confidence level 

𝐶𝐶𝑎𝑅𝛼(𝑠) =
1

⌊𝑟 (1 −
𝛼

100
)⌋ + 1

∑ 𝑐𝑖

𝑟

𝑖=⌊𝑟
𝛼

100
⌋

. 

The Cost-at-Risk at confidence level 𝛼tells us that based on the worst (100 − 𝛼)%of 

scenarios how much the minimum cost will be on the chosen timeframe, while the 

Conditional Cost-at-Risk at confidence level 𝛼tells us about the expected costs of the 

worst (100 − 𝛼)%of scenarios on the chosen timeframe. 

Although measuring the deviation of costs is crucial, there are several other metrics to 

assess risks. We address this issue in the following sections. 

4.1 Interest rate sensitivity 

Unexpected changes in the yield curve may cause increase in the interest rate 

expenditures, and therefore it is crucial to measure interest rate sensitivityfrom a debt 

management perspective. Short-term or variable interest rate instruments are considered 

riskier than long-term or fixed rate instrumentsin this aspect. Duration and Average 

TimetoRe-fixing (ATR) can be used to capture the exposure of the debt portfolio to 

changes in interest rates. 

The ATR of a fixed interest rate instrument is equal to its time to maturity, while for a 

floating rate instrument it measures the time until its next coupon re-fixing. Thus the ATR 

of the debt portfolio measures how long on average it takes for the interest rate changes 

to be incorporated into the costs of the overall debt. Let 

𝑎𝑡𝑟𝑡 =
∑ 𝜁𝑡,𝑖𝑣𝑡,𝑖

𝑁
𝑖=1

∑ 𝑣𝑡,𝑖
𝑁
𝑖=1

 

denote the ATR of the debt portfolio at time 𝑡, with 𝑁 instruments present in the portfolio. 

𝜁𝑡,𝑖 denotes the time to the next coupon fixing at time 𝑡 for instrument 𝑖, while 𝑣𝑡,𝑖 =

𝐹𝑉𝑖𝑃𝑡,𝑖 (
100−∑ 𝐶𝑘,𝑖𝑘≤𝑡

100
), where 𝐹𝑉𝑖 is the Face Value of instrument 𝑖, 𝑃𝑡,𝑖denotes the pieces of 

instruments 𝑖issued by the DMO at time 𝑡, and 𝐶𝑘,𝑖 is the capital repaid at time 𝑘 of 
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instrument 𝑖 given in percentage points. A higher value of ATR indicates a higher 

immunity against interest rate changes, while low values indicate that a high share of the 

debt portfolio will be subject to interest rate changes in the near future, thus signaling a 

higher exposure to interest rate risk. 

4.2 Refinancing risk 

The risk rising from the maturity structure of a given portfolio is called refinancing risk. 

Refinancing risk measures the share of debt portfolio maturing in a given time period. 

Generally, in periods of turbulence or high volatility, market liquidity typically dries up, 

making the renewal of maturing debt expensive, or, in an extreme case, 

impossible.Therefore, it is vital for debt management to smooth the maturity structure, 

and thus avoid maturity peaks. 

Average Time-to-Maturity (ATM) measures how long it takes on average to renew 

outstanding debt.Let 

𝑎𝑡𝑚𝑡 =
∑ 𝜂𝑡,𝑖𝑣𝑡,𝑖

𝑁
𝑖=1

∑ 𝑣𝑡,𝑖
𝑁
𝑖=1

 

denote the ATM of the outstanding debt portfolio at time 𝑡, with 𝑁 instruments present in 

the portfolio. 𝜂𝑡,𝑖 denotes the time to maturity at time 𝑡 for instrument 𝑖, while 𝑣𝑡,𝑖 is the 

same as above. Refinancing risk is lower when ATM is higher, as it means a lower 

renewal rate in the short term. 

The refinancing ratio measures the share of the debt portfolio to be renewed on a given 

time horizon.Let 

𝑟𝑒𝑓𝑖𝑛𝑡,𝜆 =
∑ 𝑣𝑡,𝑖𝟏{𝜂𝑡,𝑖≤𝜆}𝑙𝑖

𝑁
𝑖=1

∑ 𝑣𝑡,𝑖
𝑁
𝑖=1

 

be the refinancing ratio of the outstanding debt portfolio at time 𝑡, with time horizon 𝜆. 

𝟏{𝜂𝑡,𝑖≤𝜆} denotes the indicator function of whether instrument 𝑖 at time 𝑡 matures within the 

chosen time horizon, and 𝑙𝑖 = 1/10 if 𝑖 is retail, while 1 in every other case. We assume – 

and years of experience at the Hungarian Government Debt Management Agency 

supports – that retail investors’ willingness to renew their government securities holdings 

tend to be higher than wholesale, especially in times of high volatility (as mentioned 

before, retail rates are higher than wholesale, especially when wholesale rates are at a 

low level. Thus, for retail investors, holding retail instruments is still worth it even in 

periods of higher volatility). 

Keeping the refinancing ratio at a low level stabilizes the debt service, increases trust in 

investors and supports higher ratings given by credit rating agencies. 
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4.3 Funding liquidity considerations 

It is clear that meeting the financing needs by issuing in only one or two instruments is 

impossible due to limits of market demand, and it is also clear that excess issuance 

comes with a cost. Avoiding financing compositions that encourage excess issuance is 

desired by the DMO. The introduction of so-called liquidity constraints and liquidity 

premium arises as a possible solution to handle the cases of excess issuance. 

We turn to the Hungarian DMO auction database to calculate issuance limits at a given 

time with the use of market demand. We calculate two values for every wholesale 

instrument. One representing the maximum amount to be issued at a given time at 

normal ‘market’ price, which we call ‘liquidity threshold’, while ‘liquidity constraints’ are 

introduced as the maximum available amount of an instrument to be issued at a given 

time. ‘Liquidity premium’ is introduced as the cost premium for the DMO to be paid for the 

amount issued above the liquidity threshold. 

We assume that T-Bills do not have a liquidity constraint.In practice, investors tend to buy 

short-term instruments even in periods of high volatility, although with a significant 

liquidity premium. Therefore, T-Bills can be viewed as safety instruments in distress times 

when financing requirementscannot be met with the issuance of other instruments. 

We introduce an indicator similar to the liquidity risk premium of Drehmann and Nikolaou 

(2013). Our indicator measures the difference between the rejected bids and the marginal 

rate. Let 𝐸(ℎ𝑡) be the expected marginal rate of the auction held at time 𝑡. Let 

𝜄𝑏,𝑖,𝑡 = (𝜌𝑏,𝑖,𝑡 − 𝐸(ℎ𝑡)) 𝑣𝑏,𝑖,𝑡 

be the adjusted rejectedbidon the auction held at time 𝑡, by the auction participant 𝑖 ∈

{1,2, … , 𝑁}. The bid 𝑏 ∈ {1,2, … , 𝐵} stands for the amount 𝑣𝑏,𝑖,𝑡 and rate 𝜌𝑏,𝑖,𝑡, and 𝐸(ℎ𝑡) <

𝜌𝑏,𝑖,𝑡. Which means that 𝜄𝑏,𝑖,𝑡 is the premium expected by the bidder for the buying of an 

additional 𝑣𝑏,𝑖,𝑡 amount above the marginal rate. The liquidity premium at time 𝑡 is the 

aggregate of the adjusted rejected bids 

𝑙𝑝𝑡 = 100
∑ ∑ 𝜄𝑏,𝑖,𝑡

𝐵
𝑏=1

𝑁
𝑖=1

𝐸(�̅�𝑡)
 

in basis points, where �̅�𝑡 denotes the cumulated amount of unsuccessful bids. Liquidity 

premium thus gives us a quantified value of the investor’s willingness of providing 

additional liquidity. The liquidity premium can be quantified for all instruments and 

regimes, and then used to measure excess issuances. 

5 Optimization 

The purpose of optimization is to construct compositions of financing that minimize the 

costs and risks of the debt portfolio. We chose three different risk metrics: standard 

deviation of the costs, 1-year refinancing ratio and ATR. We intend to maximize the latter 
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and minimize the former two as well as the expected costs. These goals are 

contradictory, therefore finding the set of Pareto-optimal solutions is our objective. 

To achieve this, we use a multiobjective optimization algorithm applying evolutionary 

heuristics to the problem. We implement the algorithm of Sun, Zhu and Cai (2017). The 

algorithm finds the corner solutions first and fills the optimization space afterwards. The 

output of the optimization algorithm is a set of Pareto-optimal solutions. A two-

dimensional Pareto-front can then be established using posterior weighting of the risk 

metrics, expressing the preferences of the decision maker. Using this method, we can 

produce a traditional mean-variance efficient frontier or plot the expected costs versus an 

arbitrarily weighted composite risk measure. 

Similar to traditional computational optimization, our implementation relies on multiple 

iterations (repeated evaluations of the objective function) to approach the optimum. 

However, to attain multiple Pareto-optimal solutions, we continuously work with a set of 

inputs, consisting of a large amount of financing compositions. Financing compositions 

constitute the input of the issuance algorithm. 

The objective function 𝐺 can be mathematically expressed as: 

min
𝑓.ℎ ∑ =1𝑠 ;∀𝑠𝑖∈𝑠: 0≤𝑠𝑖≤1

𝐺(𝑠) = (𝑐𝑜𝑠𝑡(𝑠), 𝑠𝑡𝑑(𝑠), 𝑟𝑒𝑓𝑖𝑛(𝑠), −𝑎𝑡𝑟(𝑠))  

where 𝑠 is a financing composition, serving as an input for the issuance algorithm. In the 

first iteration of the optimization process, each financing composition is randomized, 

taking a uniform distribution on the simplex of the appropriate dimension. 

The issuance algorithm is an essential part of the optimization process, connecting input 

(financing composition) and the output (costs and risks). Issuances are simulated with a 

monthly frequency. The horizon of the simulation is the first calendar year after the start 

plus 5 years, adding up to a total of 60-71 months. 

Now let 𝑑 be the number of simulated months, and v = [𝑣0𝑣1𝑣2 … 𝑣𝑑]′the total stock of 

debt instruments we want to attain with 𝑣0 being the initial stock. Using the vector of 

yearly projected deficits, we create a monthly f = [𝑓1𝑓2 . . . 𝑓𝑑]′ vector. We can then 

recursively calculate 𝑣𝑖 = 𝑣𝑖−1𝑓𝑖 , (𝑖 = 1, 2, … , 𝑑). We also create a v𝑚𝑎𝑥 = 1,05v maximal 

stock vector, and a  

𝑣𝑖
𝑚𝑖𝑛 = {

𝑣𝑖(0,94 + 0,01𝑖), 𝑖 ≤ 5
𝑣𝑖, 𝑖 > 5

. 

minimal stock vector. 

The maximal and minimal stock vectors are required due to liquidity constraints and 

smoothing. Should a large amount of stock mature at the start of the simulation, we can 

avoid issuing Treasury Bills for liquidity instead of moving towards the desired structure of 
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financing. Similarly, a 5% extra issuance over the required stock allows a buffer in case of 

a possible eventual crisis and simulates pre-financing strategies employed by DMOs. 

If we intend to reach the desired composition of debt in 𝑚 months, let w = [𝑤1𝑤2 . . . 𝑤𝑑]′ 

be a vector of weights calculated by: 

𝑤𝑖 = {
𝑖/𝑚, 𝑖 < 𝑚

1, 𝑖 ≥ 𝑚
. 

Furthermore, let 𝑝 denote the shares of the initial portfolio and 𝑇 ad × n matrix, where 

𝑇𝑖𝑗 = 𝑣𝑖 ((1 − 𝑤𝑖)𝑝𝑗 + 𝑤𝑖𝑠𝑗). 

The value of 𝑇𝑖𝑗 gives the desired stock of instrument 𝑗 for month 𝑖.  

To calculate the net issuance of instruments for month 𝑖, let 𝑡 denote the 𝑖-th row of 𝑇 and 

𝑢 denote the current stocks of instruments at month 𝑖. The net issuance vector 𝑥 is the 

result of 

𝑙𝑒𝑥𝑚𝑎𝑥
𝑥

(𝑚𝑖𝑛 (
𝑥 + 𝑢

𝑡
)) 

𝑓. ℎ. : 𝑥 ≥ 0, 

𝑥 ≤ 𝑚𝑎𝑥(0 , 𝑡 − 𝑢), 

𝐿𝑥 ≤ 𝑏, 

1𝑛
′ (𝑥 + 𝑢) ≤ 𝑚𝑎𝑥 (𝑣𝑖

𝑚𝑎𝑥, 1𝑛
′ 𝑢), 

where 𝑏 is the vector of liquidity constraints and 𝐿 is the corresponding summary matrix. 

We use 6 different liquidity constraints: retail, FX, Treasury Bill and 3/5/10-year 

Hungarian Government Bond. 

The so-called lexicographic maximization, inspired by the Constrained Equal Losses rule 

(Fleiner and Sziklai, 2012), can be interpreted as trying to maximize the smallest share of 

the actual versus desired stock. If it can be accomplished in multiple ways, we maximize 

the second smallest share and so on.  

Should 1n
′ (x + u) ≥ 𝑣𝑖

𝑚𝑖𝑛 remain unfulfilled, meaning that the minimal total stock is not 

reached, we finance the remaining value by issuing Treasury Bills, even if its liquidity 

constraint is exceeded. This simulates emergency borrowing at a significantly higher cost. 

6 Final results 

In this section we present and examine the results of the optimization. We initialized the 

optimization procedure by randomly generating 5000 financing compositions and refined 

them through 1000 iterations. Costs and risks were aggregated from December 2017 to 

December 2022. 
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Figure 2 shows the optimal financing compositions given an equal weighting of standard 

deviation, ATR and 1-year share of refinancing. The composite risks were calculated by 

individually standardizing the 3 risk measures over the 5000 financing compositions and 

adding them together. 

Figure 2: Optimal compositions of financing, composite risk based on 1/3 standard 
deviation - 1/3 ATR - 1/3 share of 1-year refinancing  

 

Source: Own calculations 

The expected yearly costs of the optimal compositions of financing range from 3.1% to 

3.5%. We can make several observations by examining Figure 2.  

First, bonds with a higher tenor, perceived to carry a lower risk, have a noticeably higher 

share in lower risk financing structures. On the other hand, a high share of Treasury Bills 

or floating rate FX bonds can reduce the expected costs, but at a significantly higher risk. 

The cost-risk trade-off is easily seen.Second, Figure 2 supports our expectations of the 

retail program. The costs of financing compositions with a high share of retail instruments 

is higher, but their addition to the financing mix is a significant mitigating factor on risks. 

The pricing of retail instruments is in the jurisdiction of the debt manager and they have a 

higher reinvestment rate as opposed to wholesale instruments, increasing the 

sustainability of the retail program.Third, a certain level of FX debt is desirable to lower 

the expected costs. Choosing longer maturity FX debt is feasible and can increase the 

portfolio ATR while reducing refinancing risk. The high exchange rate risk is certainly a 

drawback, but it is mitigated by diversifying the rest of the debt.Fourth, the share of 5-

year floating rate Hungarian Government Bond reaches its theoretical limit set by liquidity 

constraints in almost every financing composition. Therefore, we can conclude that its 

lower refinancing risk and longer maturity make it a worthwhile alternative to the slightly 
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cheaper but riskier Discount Treasury Bills and the more expensive, but slightly less risky 

fixed interest bonds. 

Figure 3: Optimal cost-risk frontier, composite risk based on 1/3 standard deviation - 1/3 
ATR - 1/3 share of 1-year refinancing (corner compositions denote 100% financing 
compositions of a single instrument without liquidity costs or constraints) 

 

Source: Own calculations 

Figure 3 shows the corresponding optimal cost-risk frontier. Current composition of 

financing means that during the simulation we intend to stick to the composition of the 

initial portfolio given at the start of the simulation as described in Section 2. The corner 

compositions of financing show the theoretical costs and risks associated with issuing a 

single debt instrument throughout the simulation. Similar to the optimal compositions of 

financing, corner compositions start from the initial portfolio. However, they take neither 

liquidity constraints nor liquidity costs into account. 

We can deduce that the current financing composition is not optimal in this particular 

cost-risk framework of our stochastic model. The composition with the lowest risk would 

mean a reduction of 5 percentage points in the share of retail debt, substituting 3-year 

Hungarian Government Bonds with 5 and 10-year ones and issuing only 10-year fixed 

interest FX debt. The feasibility of such policy changes is of course a question, but the 

results can prompt the debt manager in a direction to achieve more optimal financing and 

debt portfolio structures. 

7 Conclusion 

In this paper we constructed a stochastic model to optimize the Hungarian government 

debt portfolio. The results of the multiobjective optimization can be used to help in 

constructing a medium term debt management strategy. According to the stochastic 
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model the optimal cost-risk frontier shows that the current debt portfolio is not Pareto-

optimal and improvements can be considered. 

We introduced several new concepts and techniques going beyond existing debt strategy 

models. Our model is the first to utilize a multiobjective approach for debt portfolio 

optimization. We also use historical data to model funding liquidity, including liquidity 

costs as well as constraints. Furthermore, our issuance algorithm uses a unique 

approach to move towards a desired debt portfolio as swiftly and efficiently as possible, 

while taking liquidity constraints into account. 

The model has some limitations in order to reduce computing times to acceptable levels. 

One such limitation is that liquidity premia and yields are exogenous, and continued 

excess issuance has no long-term effect on the yield curve. The government deficit is 

also assumed to be exogenous and unaffected by debt expenditures. 

The model is flexible enough to serve as a foundation for future analyses. For example, 

by removing or adding model instruments, we could measure the sensitivity and stability 

of the model and explore new possibilities such as financing the government using very 

long maturity or wholesale inflation-linked debt.Furthermore, the model can be used to 

carry out stress tests by examining the results of individual scenarios. Thus, the effects of 

a particularly severe shift in the yield curve, or the repercussions of a significantnegative 

demand shock could be analyzed. 
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