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Abstract: 

One of the most important problems faced by every investor is asset allocation. An investor during 

making investment decisions has to search for equilibrium between risk and returns. Risk ‎and ‎return are 

uncertain parameters in ‎the ‎suggested portfolio optimization models and should be estimated to solve 

the‎‎problem. The estimation might‎ lead ‎to ‎large ‎error in the final decision. One of the widely used and 

effective approaches for optimization with data uncertainty is robust optimization. In this paper, we 

present a new robust portfolio optimization technique for mean-CVaR  portfolio selection problem 

under the estimation risk in mean return. We additionally use CVaR  as risk measure, to measure the 

estimation risk in mean return. Moreover, to solve the model efficiently, we use the smoothing 

technique of Alexander et al. [1]. We compare the performance of the CVaR  robust mean-CVaR  model 

with robust mean-CVaR  models using interval and ellipsoidal uncertainty sets. It is observed that the 
CVaR  robust mean-CVaR  portfolios are more diversified. Moreover, we study the impact of the value 

of confidence level on the conservatism level of a portfolio and also on the value of the maximum 

expected return of the portfolio. 

Keywords: Portfolio Optimization; Robust Optimization; Value at Risk; Conditional Value at Risk; 

Smoothing 

1 Introduction 

Portfolio optimization is one of the best known approaches in financial portfolio selection. The earliest 

technique to solve the portfolio selection problem was developed by Harry Markowitz in the 1952. In 

this method that is called mean-variance (MV) portfolio optimization model, the portfolio return is 

measured by the expected return of the portfolio and the associated risk is measured by the variance of 

portfolio returns [16]. 

Variance as the risk measure has its weaknesses. Controlling the variance does not only lead to low 

deviation from the expected return on the downside, but also on the upside [17]. Hence, alternative risk 

measures have been suggested to replace the variance such as Value at Risk (VaR ) that manage and 

control risk in terms of percentiles of loss distribution. Instead of regarding the both upside and 

downside of the expected return, VaR  considers only the downside of the expected return as risk and 

represents the predicted maximum loss with a specified confidence level (e.g. 95%) over a certain 

period of time (e.g. one day) [5, 6, 15].  



 

 

VaR is a popular risk measure. However, VaR  may have drawbacks and undesirable properties that limit 

its  

use [2, 11, 14]. Such as lack of subadditivity, i.e., VaR  of two different investment portfolios may be 

greater than the sum of the individual VaR s. Also, VaR is nonconvex and nonsmooth and has multiple 

local minimum, while we seek the global minimum [6, 10, 14]. So alternative risk measures was 

introduced such as Conditional Value at Risk ( CVaR ) - the conditional expected value of loss, under the 

condition that it exceeds the value at risk [5]. VaR implies that “what is the maximum loss that we 

realize?” but CVaR  asks: “How do we expect to incur losses when situation is undesirable?”. Numerical 

experiments show that minimum CVaR  often lead to optimal solutions close to the minimum VaR , 

because VaR  never exceeds CVaR  [15]. CVaR  has better properties than VaR . CVaR optimization is a 

convex optimization problem and thus it is easy to optimize [6]. It is demonstrated that linear 

programming techniques can be used for optimization of CVaR  risk measure [10, 15]. 

The rest of the paper is arranged as follows. In Section 2, we state the mean- CVaR  portfolio selection 

problem. Then because of the inevitable estimation error of the mean return of the assets, we present 

robust optimization by CVaR  in Section 3. To solve the model efficiently, we use the smoothing 

technique of Alexander et al. [1]. Finally, in Section 4, we compare the performance of the CVaR  

robust mean-CVaR  model with robust mean-CVaR  models using interval and ellipsoidal uncertainty 

sets on an example. We have observed that the CVaR  robust mean-CVaR  portfolios are more 

diversified and they are sensitive to initial data used to generate each set of   samples. Moreover, we 

demonstrate the value of confidence level affects on the conservatism level, diversification and also on 

the value of the maximum expected return of the resulting portfolios. 

2 Mean-Conditional Value at Risk 

Consider assets 1, ..., nS S
, 2n  , with random returns. Suppose i  denote the expected return of asset iS

 

and also consider ix
 as the proportion of holding in the ith  asset. We can represent the expected return 

of the resulting portfolio x  as follows:  

1 1[ ]  ...   .               (1)
T

n nE x x x x     
 

Also, we will assume that the set of feasible portfolios is a nonempty polyhedral set and represent that 

as    | ,  x Ax b Cx d   
 where A  is a m n  matrix, b is an m -dimensional vector, C  is a p n  

matrix and d  is a p -dimensional vector [6]. In particular, one of the constraints in the set   is

1

1  = 
n

i

i

x




.  

Let ( , )f x y  denote the loss function when we choose the portfolio x  from a set of feasible portfolios 

and y  is the realization of the random events (the vector of the asset returns of n  assets). We consider 

the portfolio return loss, ( , )f x y , the negative of the portfolio return that is a convex (linear) function of 

the portfolio variables x :  



 

 

1 1( , )  [ ...  ].            (2)
T

n nf x y y x y x y x       

We assume that the random vector y  has a probability density function denoted by ( )p y . For a fixed 

decision vector x , the cumulative distribution function of the loss associated with that vector is 

computed as follows: 

( , )
( , ) ( ) .  (3)                 

f x y
x p y dy


 


 

 

Then, for a given confidence level  , the VaR   associated with portfolio x is represented as 

  ( ) min | , .          (4)VaR x x      
 

Also, we define the CVaR   associated with portfolio x  as:   

( , ) ( )

1
( )   ( , ) ( ) .  (5)

(1 ) f x y VaR x
CVaR x f x y p y dy




 





 

Theorem 1-2. We always have: 
( )  ( )CVaR x VaR x 

, that means CVaR  of a portfolio is always at least 

as big as its VaR . Consequently, portfolios with small CVaR  also have small VaR . However, in general 

minimizing CVaR  and VaR  are not equivalent. 

Proof: See [6]. 

Since the definition of CVaR  implies the VaR  function clearly, it is difficult to work with and optimize 

this function. Instead, the following simpler auxiliary function is considered: 

( , )

1
( , ) ( ( , ) ) ( ) , (6)

(1 )
  

f x y
F x f x y p y dy


  

 
  




 

and or 

1
( , ) ( ( , ) ) ( ) , (7)

(1 )
         F x f x y p y dy   




  




 

where  max , 0a a



. This function, considered as a function of  , has the following important 

properties that makes it useful for the computation of VaR and CVaR  [6]: 

1. 
F  is a convex function of  . 

2. 
VaR  is a minimizer over   of 

F . 

3. The minimum value over   of the function 
F  is 

CVaR . 

As a consequence of the listed properties, we immediately deduce that, in order to minimize 
( )CVaR x  

over x , we need to minimize the function 
( , )F x 

with respect to x  and   simultaneously: 

,
min ( )  min ( , ).                (8)

x x
CVaR x F x 




 



 

 

Consequently, we can optimize CVaR  directly, without needing to compute VaR  first. Since we 

assumed that the loss function ( , )f x y  is the convex (linear) function of the portfolio variables x , so 

( , )F x 
 is also a convex (linear) function of x . In this case, provided the feasible portfolio set   is 

also convex, the optimization problems in equation (8) are convex optimization problems that can be 

solved using well known optimization techniques for such problems.  

Instead of using the density function ( )p y of the random events in formulation (7) that it is often 

impossible or undesirable to compute it, we can use a number of scenarios in the names of iy
 for 

1,...,i T . In this case, we consider the following approximation to the function
( , )F x 

:  

1

1
( , ) ( ( , ) ) .        (9)

(1 )

T

i

F x f x yi
T

   






  



 

Now, in the problem
min ( )

x
CVaR x

, we replace 
( , )F x 

 with 
( , )F x 

: 

,
1

1
min  ( ( , ) ) . (10)

(1 )
       

T

x
i

f x yi
T

 






 



 

To solve this optimization problem, we introduce artificial variables iz
 to replace 

( ( , ) )if x y 



. To do 

so, we add the constraints 
0iz 

and 
( , )i iz f x y  

to the problem [15]: 

, ,
1

1
min     

(1 )

 . .      0,   1, ...,                            (11) 

           ( , ) ,   1, ...,

           .

T

i
x z

i

i

i i

z
T

s t z i T

z f x y i T

x













 

  





 

It should be noted that risk managers often try to optimize risk measure while expected return is more 

than a threshold value. In this case, we can represent mean- CVaR model as follows: 

, ,
1

1
min     

(1 )

 . .     ,                                          (12)

          0,   1, ...,

          ( , ) ,   1, ...,

          ,

T
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i
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T
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














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or 



 

 

, ,
1

1
min     (

(1 )

. .     0,   1, ...,                            (13)

          ( , ) ,   1, ...,

          ,  

)

 

                      

T
T

i
x z

i

i

i i

x z
T

s t z i T

z f x y i T

x


  







  


 

  





 

where the first constraint of problem (12) indicates that the expected return is no less than the target 

value R and 0   used in problem (13) is risk aversion parameter that adapts the balance between 

expected return and 
( )CVaR x . It is important to note that there is an equivalence between R  and   so 

that the problems (12) and (13) generate the same efficient frontiers. Since ( , )f x y  is linear in x , all the 

expressions 
( , )i iz f x y  

 represent linear constraints and therefore the problem is a linear 

programming problem that can be efficiently solved using the simplex or interior point methods. 

3 CVaR  robust mean- CVaR  model 

One of the uncertain parameters for mean- CVaR model is   and using estimations for this parameter 

leads to an estimation risk in portfolio selection. In particular, small differences in the estimations of   

can create large changes in the composition of an optimal portfolio. One way to reduce the sensitivity 

of mean- CVaR model to the parameter estimations is using robust optimization to determine the optimal 

portfolio under the worst case scenario in the uncertainty set of the expected return. To this end, we 

represented robust mean- CVaR models with interval and ellipsoidal uncertainty sets in the previous 

studies that have been demonstrated in formulations (14) and (15) respectively.  

, ,
1

1
min     

(1 )

. .     ( ) ,                                   (14)

          0,   1, ...,           

          ( , ) ,   1, ...,

          ,

 

T

i
x z

i
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, ,
1

1
min     

(1 )

. .    || ||  ,                       (15)

          0,   1, ...,           

          ( , ) ,   1, ...,

          ,

 

T

i
x z

i

T T

i

i i

z
T

s t M x x R

z i T

z f x y i T

x















 

 

  
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where 
L

  is a given vector and M  is a n -dimensional matrix. 

Now, we present CVaR  robust mean- CVaR  portfolio optimization problem that estimation risk in mean 

return is measured by CVaR . The CVaR  robust mean- CVaR  model specifies an optimal portfolio based 



 

 

on the tail of the mean loss distribution and the adjustment of the confidence level with regard to the 

preference of the investor corresponds to the adjustment of the conservative level with considering the 

uncertainty of the mean return [18].  

In this model, CVaR  is used to measure the risk of the portfolio return as before. In addition, when 

using the mean- CVaR  model, we consider the uncertainty of the expected return that can be considered 

as estimation risk and use CVaR  to measure estimation risk. CVaR  with this perspective is denoted as 

CVaR


(We use 
y

CVaR  to denote the CVaR  risk measure discussed in Section 2 in order to differentiate 

it from CVaR


 and also we use 
( , )

y
F x 

to denote its associated 
( , )F x 

). Thus, considering the 

problem (13), a CVaR  robust mean- CVaR  portfolio will be determined as the solution of the following 

optimization problem:  

, ,
1

1
min     ( ) ( )

(1 )

. .     0,   1, ...,                                      (16)

          ( , ) ,   1, ...,

          .

 

T
T

i
x z

i

i

i i

CVaR x z
T

s t z i T

z f x y i T

x






  





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

 

  





 

For a portfolio of n  assets, we assume
n

  is the random vector of the expected returns of the assets 

with a probability density function ( )p  . To determine the mean loss of the portfolio, we define mean 

loss function, ( , )f x  , as follows [18]: 

1 1( , )  [ ...  ].     (17)
T

n nf x x x x        
 

So, for confidence level  ,
( )

T
CVaR x



 
can be defined as follows:  

1
( ) min( ([ ( , ) ] )). (18)

1

T
CVaR x E f x



 
   




   

  

According to the definition of 
CVaR



 and CVaR  robust mean- CVaR  model, we find that 
CVaR



  will 

increase as the value of   increases. This corresponds to taking more pessimism on the estimation risk 

in   in the model and to optimize the portfolio under worse cases of the mean loss. Thus, the resulting 

CVaR  robust portfolio is more conservative. Conversely, conservatism of the portfolio is reduced as the 

value of   decreases [18]. In section 4, we will illustrate the impact of the value of   on the 

conservatism level of a portfolio and also on the value of the maximum expected return of the portfolio.    

As before, we can consider an auxiliary function to simplify the computations: 

1
( , ) ( ( , ) ) ( ) , (19)

(1 )
n

F x f x p d




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




  




 

and use the following approximation to the function
( , )F x



 
:   



 

 

1

1
( , ) ( ) ,       (20)

(1 )

m
T

i

i

F x x
m


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





   



 

Where 1, ..., m 
 are a collection of m  independent samples for   based on its density function ( )p  . 

We can show that [15]: 

,
min ( ) min ( , ).            (21)

T

x x
CVaR x F x




 
 

 
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So, with introducing artificial variables iv
 to replace 

( ( , ) )if x  



 in ( , )F x



   and adding the 

constraints 
0iv 

and 
( , )i iv f x   

 to the problem to do so, the CVaR  robust mean-CVaR  portfolio 

optimization problem becomes 

, , , ,
1 1

1 1
min      (

(1 ) (1 )

. .        0,   1, ...,                    

             ( , ) ,   1, ...,

            0,   1, ...,                                  

 )

 

m T

i i
x z v

i i

i

i i

i

v z
m T

s t z i T

z f x y i T

v i m

 
  

 



 

  
 

 

  

 

 

         (22)

            ( , ) ,   1, ...,

            .

i iv f x i m

x

   

  

This problem has ( )O m n T  variables and ( )O m n T  constraints that m  is the number of  -samples, 

n  is the number of assets and T  is the number of y -scenarios. When the number of y -scenarios and 

-samples increase, the approximations is getting closer to the exact values. But the computational cost 

significantly increases and thus makes the method inefficient.  

Instead of this method, we can more efficiently determine the CVaR  robust mean- CVaR  portfolios 

using the smoothing method suggested by Alexander [1]. Alexander presented the following function 

to approximate
( , )F x



 
: 

1

1
ˆ ( , ) ( ),        (23)

(1 )
 

m
T

i

i

F x x
m



     
 

   



 

where
( )a  is defined as follows:  

2

                           ,

1 1
( )       ,           (24)

4 2 4

0                           . .
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a
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   




     





  

For a given resolution parameter 0  , 
( )a  is continuous differentiable, and approximates the 

piecewise linear function max( , 0)a [1]. We can also use this function to approximate 
( , )

y
F x 

 as 

follows:  
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ˆ ( , ) ( ( , ) )    (25)
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T
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Using smoothing method, the CVaR  robust mean- CVaR  model is as follows: 

, ,
1

1

1
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1
    ( ( ))
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 . .      .                                                   (26)
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In this paper, we assume  0.005   for both smoothing functions. Formulation (26) has ( )O n variables 

and ( )O n constraints. Thus, the number of variables and constraints do not change as the size of  -

samples ( )m  and y -scenarios ( )T  increase. The efficiency of the smoothing approach is shown in the 

next section. 

4 Numerical results 

In this section, first we will compare the performance of the CVaR robust mean- CVaR  model with 

robust mean- CVaR models using interval and ellipsoidal uncertainty sets by actual data. Then, we will 

compare time required to compute the CVaR  robust portfolios using problems (22) and (26). The 

dataset used here is available returns for eight assets that expected return and covariance matrix of the 

return of assets have been given in tables (1) and (2) [19]. In addition, the computations are based on 

10,000  -samples generated from the Monte Carlo re-sampling (RS) method introduced in [13] and 

96 y -scenarios obtained via computer simulation. It should be further noted that the computation is 

performed in MATLAB version 7.12, and ran on a Core i5 CPU 2.40 GHz Laptop with 4 GB of RAM. 

Problems are solved using CVX [3] and function “fmincon” in Optimization Toolbox of MATLAB. 

Table 1.  mean return vector   

0.01× S1 S2 S3 S4 S5 S6 S7 S8 

 1.0160 0.4746 0.4756 0.4734 0.4742 -0.0500 -0.1120 0.0360 

Table 2: covariance matrix Q  

0.01× S1 S2 S3 S4 S5 S6 S7 S8 

S1 0.0980               

S2 0.0659 0.1549             

S3 0.0714 0.0911 0.2738           

S4 0.0105 0.0058 -0.0062 0.0097         

S5 0.0058 0.0379 -0.0116 0.0082 0.0461       

S6 -0.0236 -0.0260 0.0083 -0.0215 -0.0315 0.2691     

S7 -0.0164 0.0079 0.0059 -0.0003 0.0076 -0.0080 0.0925   

S8 0.0004 -0.0248 0.0077 -0.0026 -0.0304 0.0159 -0.0095 0.0245 



 

 

4.1 Sensitivity to initial data 

To show the sensitivity of the CVaR  robust portfolio to initial data, we repeat RS sampling technique 

100 times. Each of figures (1), (2) and (3) display 100 CVaR  robust actual frontiers (actual frontiers are 

obtained by applying the true parameters on the portfolio weights derived from their estimated values 

[4]) for 99%,  90%, 75%   respectively.  

As can be seen from figures, the CVaR  robust mean- CVaR  actual frontiers change with initial data used 

to generate   samples. Also, this changes increase as the confidence level  decreases. Thus, we can 

regard  as an estimation risk aversion parameter. With these qualities, an investor who is more averse 

to estimation risk will choose a larger  . On the other hand, an investor who is more tolerant to 

estimation risk may choose a smaller  . 

Figure 1. 100 CVaR  robust mean- CVaR  actual frontiers ( 99%  ) 

 

Figure 2. 100 CVaR  robust mean- CVaR  actual frontiers ( 90%  ) 

 



 

 

Figure 3. 100 CVaR  robust mean- CVaR  actual frontiers ( 75%  ) 

 

4.2 Portfolio diversification 

As we know, diversification decreases risk [6]. Portfolio diversification indicates distributing 

investment among assets in the portfolio. We illustrate in the following that compared with the robust 

mean- CVaR  portfolios with interval and ellipsoidal uncertainty sets, the CVaR  robust mean- CVaR  

portfolios are more diversified. In addition, the diversification of the CVaR  robust mean-CVaR  

portfolios decreases as the confidence level  decreases. 

To do so, we compute the CVaR robust mean- CVaR  portfolios (for 99%,  90%, 75%  ) and robust mean-

CVaR portfolios with interval and ellipsoidal uncertainty sets for the 8-asset example. The composition  

graphs of the resulting optimal portfolios are presented in figures (4), (5), (6), (7) and (8). Considering 

these figures, when the expected return value increases from left to right, the allocated assets in the 

portfolios with minimum expected return are replaced by a composition of other assets, gently. 

Observing the right-most end of each graph, we can conclude the composition of the assets of the 

portfolio achieved from CVaR robust mean- CVaR  model with 99%  is more diversified than that 

achieved from other models. 

In figures (9), (10) and (11), the CVaR robust mean- CVaR actual frontiers for different values of  are 

compared with robust mean- CVaR actual frontiers with interval and ellipsoidal uncertainty sets and 

mean- CVaR true efficient frontier. Since portfolios on the robust mean- CVaR actual frontiers with 

interval and ellipsoidal uncertainty sets are less diversified, they should accept more risk for a given 

level of expected return and also achieve a lower maximum expected return. Consequently, in the 

figures, their actual frontiers are more right and lower than the other frontiers and this is one of the 

disadvantages of the low diversification in the portfolio. Seeing these frontiers, we also deduce that the 

maximum expected return and the associated return risk increase as the confidence level   decreases. 

But in this case, the variations on the compositions of the resulting maximum-return portfolios might 

be large, and so the exact solution will not always achieve. Instead, the maximum expected return of 

the portfolio is low for 99%   and the variations will be low. So, the probability of the having poor 

performance of the portfolio will be reduced when there is a big estimation risk of  . Thus, resulting 

robust portfolios will be too conservative. Consequently, an investor who is more risk averse to 



 

 

estimation risk selects a larger   and obtains a more diversified portfolio. This justifies that it is 

reasonable to regard   as an estimation risk aversion parameter. 

Figure 4. Compositions of robust mean- CVaR portfolio weights with interval uncertainty set 

 

Figure 5. Compositions of robust mean- CVaR portfolio weights with ellipsoidal uncertainty set 

 

Figure 6. Compositions of CVaR  robust mean- CVaR  portfolio weights ( 99%  ) 

 

Figure 7. Compositions of CVaR  robust mean- CVaR  portfolio weights ( 90%  ) 

 



 

 

Figure 8. Compositions of CVaR  robust mean- CVaR  portfolio weights ( 75%  ) 

 

Figure 9. robust mean- CVaR  with interval and ellipsoidal uncertainty sets and CVaR  robust (
99%  ) actual frontiers 

 

Figure 10. Robust mean- CVaR  with interval and ellipsoidal uncertainty sets and CVaR  robust  

( 90%  ) actual frontiers 

 



 

 

Figure 11. Robust mean- CVaR  with interval and ellipsoidal uncertainty sets and CVaR  robust  

( 75%  ) actual frontiers 

 

4.3 Comparison of efficiency of two approaches for computing CVaR  robust portfolios 

In section 3, we introduced two formulations (22) and (26) to compute CVaR  robust portfolios. Now, 

we show that computing CVaR robust portfolios via the smoothing approach (problem (26)) is more 

efficient. To do so, we compare the time required to solve problems (22) and (26) with different 

number of assets and different number of  -samples and y -scenarios. The results have been given in 

tables (3) and (4). 

Table 3. time required to compute maximum-return ( 0  ) portfolios for problem (22)  

( 99%,  0.005   ) 

scenarios(T) samples(m) 8 assets 50 assets 148 assets 

500 5,000 3.01 5.7 23.05 

1,000 10,000 4.85 9.95 37.2 

3,000 25,000 13.86 45.32 185.49 

Table 4. time required to compute maximum-return ( 0  ) portfolios for problem (26)  

( 99%,  0.005   ) 

scenarios(T) samples(m) 8 assets 50 assets 148 assets 

500 5,000 1.13 3.08 15.67 

1,000 10,000 1.28 4.67 26.1 

3,000 25,000 1.69 12.22 79.31 

As we see, the time required to compute CVaR  robust portfolios via two approaches differ significantly 

when the sample size and the number of assets increase. For example, the time required to solve the 

CVaR  robust mean- CVaR  problem by two approaches for problem with 8 assets and 5000 samples and 

500 scenarios differ slightly. But, when the number of assets is more than 50, the number of scenarios 

is more than 500 and the sample size is more than 5000, differences become significant. Problem with 

148 assets, 3000 y -scenarios and 25000  -samples is solved in less than 80 second using smoothing 



 

 

technique, while by (22) it took over 185 seconds. These comparisons show that when the number of 

scenarios and samples become larger, the smoothing approach is more computationally efficient to 

determine CVaR  robust portfolios than other approach. 
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