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Abstract:
The objectives of this paper are to construct the efficient frontier and optimum portfolio of
agricultural commodity futures, and to evaluate financial risk by Value at Risk. We evaluated
alternative volatility forecasting and computed daily Value at Risk (VaR) based on Realized Volatility
approach and ARFIMA – FIGARCH model. The intraday trade data of three agricultural commodity
futures prices, namely corn, wheat and soybean traded in the Chicago Board of Trade (CBOT) with
three different frequencies namely 1 minute, 5 minutes and 15 minutes, were collected from
Bloomberg database. The complete data set covered the period from November 2015 to December
2016. The empirical results showed that the calculated realized volatility from Realized Covariance
Measure (Andersen et al. 2003) of corn, wheat and soybean futures returns have the long memory
feature for every frequency based on R/S test and GPH test. The simulated returns from ARFIMA –
FIGARCH are applied to construct the efficient frontier and optimum portfolio. The optimum portfolio
suggested investing more than half in corn followed by soybean and wheat, respectively.
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1. Introduction 

Commodity is a basic good, either material or product, traded commercially and can be 

used interchangeably with other commodities of the same type.  Commodities are most 

often used as inputs in the production of other goods or services. The quality of a given 

commodity may differ slightly, but it is essentially uniform across producers. When they 

are traded on an exchange, commodities must also meet specified minimum standards 

for the type for examples crude oil, copper, natural gas, wheat, corn, rubber, etc. (World 

Bank, 2017). 

The price of a commodity depends on the demand-supply from the producers and the 

buyers. Investors or speculators are more likely to buy commodities, resulting in higher 

volatility in commodity prices. Commodities also attract investors, commodity traders 

and speculators in terms of trade for implementation, speculation and hedging.  

These factors all contribute to volatility in commodity prices particularly those of 

agricultural commodities which are also attributable to such internal factors as 

seasonality, weather vagaries, and natural disasters. 

Table 1. Nominal price indexes   

 
Price Indexes (2010=100) 

2014 2015 2016 2017 2018 

Energy 118 65 55 68 71 

Non-energy 97 82 80 84 85 

 Agriculture 103 89 89 89 90 

  Beverage 102 94 91 83 84 

  Food 107 91 92 92 93 

   Oils and meals 109 85 90 89 91 

   Grains 104 89 82 82 83 

   Other food 108 100 105 106 106 

  Raw Materials 92 83 80 82 83 

 Fertilizers 100 95 75 72 72 

 Metals and Minerals 85 67 63 77 76 

Precious Metals 101 97 97 97 97 

Source: World Bank, 2017. 

Mostly, the buying and selling of commodities will be made through futures markets in 

the form of futures contracts. Futures market is a channel for investors and speculators 

to make profit and implement hedging. Agricultural commodity price volatility poses a 

risk called "commodity risk", which is the risk of commodity price fluctuations. Therefore, 

those who are exposed to this type of risk directly are commodity producers and users 

of the commodity as a non-dispensable input such as mining operation’s owners, oil 

producers, car manufacturers, airlines, food manufacturers, jewelers, gold shops, etc. 

Commodity risk will directly affect earnings, profit or loss, especially if the commodity 

price is volatile. 

Risk management has become a more common focus since the 1970s, especially 

among organizations with inclination toward risk-aversion. Risk management tools have 

been developed extensively, but the most popular one is Value at Risk (VaR) because 

VaR can analyze the value of the risk or damage the most concrete, say the amount of 
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money lost, and is designed to be easy to use. The global financial market has begun 

to fluctuate more, resulting in increased demand for risk management measures. 

In 2003, Andersen et al. analyzed and forecast realized volatility using high frequency 

data (Intraday data) and compared to low frequency data (Daily data). They found 

realized volatility calculated from high frequency is more accurate than that from low 

frequency (Andersen et al, 2003). Subsequently, in 2006 Chen compared realized 

volatility analysis using high frequency data and low frequency data. The results show 

that high frequency data can analyze the realized volatility better than low frequency 

data (Chen, Z. & et al, 2006). In 2008, Degiannakis applied ARFIMAX and ARFIMAX-

TARCH to estimate the realized volatility (Degiannakis, S. & et al, 2008). Then in 2011, 

Andersen et al introduced the concept of market microstructure noise for explaining 

realized volatility (Andersen, T. & et al, 2011). And in 2016, Huang and Sharma studied 

the realized volatility and tested long-memory property in stock market through GARCH 

model (Huang, Z. & et al, 2016 and Sharma, P., 2016). From the previous literature 

review, it was found that the use of high frequency data to calculate the realized volatility 

is more accurate than the use of low frequency data. 

After extensive researches into realized volatility and the use of high frequency data, 

several researchers have brought the results to the fore. Thomakos et al. in 2003 

conducted a study of realized volatility in futures markets using high frequency data and 

tested the long-memory property and they found that the commodity futures in the 

futures market have a long-memory moving behavior (Thomakos et al, 2003). Later in 

2004, a long-memory test in agricultural commodities revealed that agricultural 

commodities have long-memory property (Jin et al, 2004). In 2005, Dehn et al also 

performed a volatility analysis in agricultural commodities using realized volatility model 

(Dehn et al, 2005). Then in 2012, Tansuchat et al. investigated long- memory property 

in agricultural futures markets using low frequency data which showed that agricultural 

futures had long-memory property (Tansuchat et al, 2012). In addition to the agricultural 

type, other commodities have been examined by realized volatility approach for 

example in the work by Wang et al  that used high frequency data to analyze the realized 

volatility and the relationship between raw crude oil and natural gas futures prices 

(Wang et al, 2008). 

In addition, many researchers have employed high frequency data to analyze the value 

at risk (Intraday VaR) such as Dionne, Shao in 2009 and Louzis in 2014 (Dionne et al., 

2009, Shao et al., 2009 and Louzis et al., 2014),  Aloui et al. in 2010 on analysis of 

energy value in energy products (Aloui et al., 2010), and Tian et al in 2017 that dealt 

with value at risk in agricultural commodities futures using high frequency data and HAR 

models (Tian et al., 2017). 
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2. Econometric Model 

2.1 Realized Volatility 

We model realized variance as in the works of Andersen et al. (2003, 2007). The log 

price is assumed to follow a continuous time jump diffusion semi-martingale process: 

  = + +  ( ) ( ) ( ) ( ) ( ) ( )          , 0 ,dp t t dt t dW t t dq t t T         (1) 

where ( )p t  is log price, ( )t  is continuous and locally bounded variation process, ( )W t  

is a standard Brownian motion, ( )t  is strictly positive stochastic volatility process 

independent from ( )W t ,   is a jump size and q  is a counting process with a value of 

1 when there is a jump and 0 otherwise (Jajuga 2001 and Laurent 2010). 

The quadratic variation for cumulative return process is as follows (Andersen et al. 

2007): 
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In the absence of jumps, realized variance will be a consistent estimator of integrated 

variance. This result is fundamental for modelling and forecasting realized variance 

(Andersen et al. 2003). However, as jumps are quite common in financial returns series, 

realized variance is not a robust estimator of integrated variance. Barndorff–Nielsen and 

Shephard (2004) introduced another measure called bipower variation which is a robust 

estimate of integrated variance. These two, realized variance and bipower variation 

( )tBV  allow therefore estimating the jump component in the price process: 

 
−  

 −  →  2

1

( ) ( ) ( )t t

t s t

RV BV s                                    (5) 

In order to prevent the estimates of squared returns from being negative, Barndorff–

Nielsen and Shephard (2004) truncated the measurement of jumps J  at zero: 

 =  − max ( ) ( ),0t t tJ RV BV                               (6) 
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2.2  Long – memory property  

The estimated daily RV from med tRV  is checked for long memory property by two long 

memory tests, namely R/S test (Hurst) and GPH test (Geweke and Porter-Hudak). The 

R/S test of range over standard deviation test is defined as: 

  
= =

 
= − − − 

 
 

11
1 1

1
max ( ) min ( ) ,

k k

T j j
k Tk T

j jT

Q y y y y
s

                               (7) 

where 
=

=  1
1

T

ji
y T y  and 

=
= − 1

1 ( )
T

T ji
s T y y . The null hypothesis of R/S test is no 

long term dependence. Alternatively, the GPH test, given the fractionally integrated 

process of y  the spectral density ( ) 
−

 =  
2

2
( ) 4sin ( )

d

uf f  where is   the Fourier 

frequency, and ( )uf  is the spectral density corresponding to 
tu . The d  can be 

estimated by least square of the following regression:  

( )
   = − +

  
2

2
ln ( ) ln 4sin j

j jf d e                             (8) 

For =1,2,..., ( )fj n T . The distribution of d̂  with the large sample if  =  ( ) ,0 1fn T T  is 

normal distribution, 
( )


=
−

2

2

1
6

( , )
nf

jj
U U

d N d  with 


= 2

2
ln[4sin ( )]j

jU , and U  is the sample 

mean of jU , =1,..., fj n . The null hypothesis of no long memory = 0d  is tested by 

traditional statistic. 

2.3 ARFIMA – FIGRCH 

In estimating an ARIMA model, the researchers choose the integer order of differencing 

d to ensure that the resulting series −(1 )d

tL y  is a stationary process. As unit root tests 

often lack the power to distinguish between a truly nonstationary ( )(1)I  series and a 

stationary series embodying a structural break or shift, time series are often first-

differenced if they fail to pass unit root test. Many time series exhibit too much long-

range dependence to be classified as (0)I  but are not (1)I . The ARFIMA model is 

designed to represent these series. This problem is exacerbated by reliance on Dickey–

Fuller style tests, including the improved Elliott, et al. (1996) test, which have (1)I  as the 

null hypothesis and (0)I  as the alternative. For that reason, it is also a good idea to 

employ a test with the alternative null hypothesis of stationarity ( )(0)I  such as the 

Kwiatkowski–Phillips–Schmidt–Shin test to see if its verdict agrees with that of the 

Dickey–Fuller style test. 

The model of an autoregressive fractionally integrated moving average process of a 

time series of order ( : : )p d q , denoted by ARFIMA ( : : )p d q  with mean  , may be 

written using operator notation as 

    − − =  2( )(1 ) ( ) ( ) , : . . .(0, ),d

t t tL L y L i i d                        (9) 
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where L  is the backward-shift operator,   = − − −1(L) 1 ... ,p

pL L    = + + +1(L) 1 ... q

qL L   

and −(1 L)d   is the fractional differencing operator defined by 
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with  ( )  denoting the gamma (generalized factorial) function. The parameter d  is 

allowed to assume any real value. 

2.4 Value at Risk (VaR)  

In order to analyze the risk, we calculate the empirical VaR and ES of an equally 

weighted portfolio with 3 assets. The equations are as follows: 

          
 =  MIN ES E r r r      (11) 

subject to         ( ) ( ) ( ) ( )+ + + +
 = + + +
 1, 1 2, 1 3, 1 4, 1t t t t

r w r r r r  
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1

4
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where 
r  is the lower  −  quintile and 

+, 1i tr  is the return on individual asset at time +1t  

2.5 Portfolio Optimization 

From the above section, we can estimate the VaR and ES (or CVaR) of equally 

weighted portfolio. In this part, we use the Monte Carlo simulation with estimated 

multivariate t copula to generate n sample size. The optimal portfolios weights of the 

selected assets then are constructed under minimization of expected shortfalls with 

respect to maximization of returns, which can be given by: 

          
 =  minES E r r r       (12) 

subject to      ( ) ( ) ( ) ( )+ + + +
= + + +1 2 3 41, 1 1, 2 1, 3 1, 4t t t t

r w r w r w r w r  

+ + + =1 2 3 4 1w w w w  

  =0 1, 1,2,3,4iw i  

where r  is the lower  −  quintile and 
+, 1i tr  is the return on individual asset at time +1t

. 

3.  Data 

The high frequency data at 1, 5, and 10 minutes of the futures price of 3 agricultures -- 

namely wheat, corn and soybean traded in the Chicago Board of Trade were collected 

from Bloomberg database, from Financial Investment Center (FIC), Faculty of 

Economics, Chiang Mai University. The study period started from November 11, 2015 

to December 8, 2016 with the total of 560,160, 112,032 and 37,344 tick data, respectively. 
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4.  Empirical Results 

In this section, the empirical results from the present study are presented. First, the 

Augmented DickeyFuller (ADF) test is used to explore the existence of unit roots in 

individual returns series. Based on the ADF test results, the large negative values in all 

cases indicate rejection of the null hypothesis at the 1% level. Next, we test long - 

memory property in realized volatility of agricultural futures by two long memory tests, 

namely R/S test (Hurst) and GPH test (Geweke and Porter-Hudak). The realized 

volatility of all agricultural commodity futures has a long - memory property. 

Figture 1 Daily RV of corn futures with 1, 5 and 15 Minutes by Realized covariance 

measure  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Calculation 

The results of ARFIMA – FIGARCH model estimation for corn, wheat and soybean with 

1, 5 and 15 minutes (the ARFIMA (p,d,q) – FIGARCH (p,d,q) model for agricultural 

commodity futures at p = 1, 2, 3 and q = 1, 2, 3 and FIGARCH model p, q = 1). The 

estimates of ARFIMA – FIGARCH model for corn with 1, 5 and 15 minutes to estimate 

d parameters in ARFIMA – FIGARCH. From the results, all frequencies are statistically 

significant, and lie between 0 and 1. Next, the estimates of ARFIMA – FIGARCH model 

for wheat with 1, 5 and 15 minutes to estimate d parameters in ARFIMA – FIGARCH. 

From the results, all frequencies are statistically significant, and lie between 0 and 1. 
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Lastly, the estimates of ARFIMA – FIGARCH model for soybean with 1, 5 and 15 

minutes to estimate d parameters in ARFIMA – FIGARCH. From the results all 

frequencies are statistically significant, and lie between 0 and 1. 

Table 2. Estimated ARFIMA – FIGARCH model for corn 

Model 

Frequency d-ARFIMA d-FIGARCH ARFIMA FIGARCH 

p q p q 

1 1 1 1 

1 minute 

-0.39776 0.99548 

1 2 1 1 -0.05075 -0.30754 

2 1 1 1 -1.16986 0.61251 

2 2 1 1 -1.34566 0.44105 

1 1 1 1 

5 minutes 

-0.07125 0.11486 

1 2 1 1 -0.31233 0.90809 

2 1 1 1 -1.21594 0.20319 

2 2 1 1 -0.19851 1.09931 

1 1 1 1 

15 minutes 

0.62645 0.63532 

1 2 1 1 -0.22312 1.22133 

2 1 1 1 -1.34012 0.45682 

2 2 1 1 0.66512 0.63572 

Source: Calculation 

The results of ARFIMA – FIGARCH model estimation for corn, wheat and soybean with 

1, 5 and 15 minutes (the ARFIMA (p,d,q) – FIGARCH (p,d,q) model for agricultural 

commodity futures at p = 1, 2, 3 and q = 1, 2, 3 and FIGARCH model p, q = 1). The 

estimates of ARFIMA – FIGARCH model for corn with 1, 5 and 15 minutes to estimate 

d parameters in ARFIMA – FIGARCH. From the results, all frequencies are statistically 

significant, and lie between 0 and 1.  

Table 3. Estimated ARFIMA – FIGARCH model for wheat 

Model 

Frequency d-ARFIMA d-FIGARCH ARFIMA FIGARCH 

p q p q 

1 1 1 1 

1 minute 

-0.98159 0.48637 

1 2 1 1 -0.79205 0.59901 

2 1 1 1 -1.07788 0.33558 

2 2 1 1 -0.13029 0.15722 

1 1 1 1 

5 minutes 

-0.23847 0.74475 

1 2 1 1 0.48255** 0.15292 

2 1 1 1 -0.05951 0.12026 

2 2 1 1 0.21907** 0.72335 

1 1 1 1 

15 minutes 

-1.00724 -0.091 

1 2 1 1 -0.83587 0.8764 

2 1 1 1 -1.09288 0.4321 

2 2 1 1 0.38471 0.3326 

Source: Calculation 

Next, the estimates of ARFIMA – FIGARCH model for wheat with 1, 5 and 15 minutes 

to estimate d parameters in ARFIMA – FIGARCH. From the results, all frequencies are 

statistically significant, and lie between 0 and 1. Lastly, the estimates of ARFIMA – 

FIGARCH model for soybean with 1, 5 and 15 minutes to estimate d parameters in 

ARFIMA – FIGARCH. From the results all frequencies are statistically significant, and 

lie between 0 and 1. 
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Table 4. Estimated ARFIMA – FIGARCH model for soybean 

Model 

Frequency d-ARFIMA d-FIGARCH ARFIMA FIGARCH 

p q p q 

1 1 1 1 

1 minute 

0.03110** -0.06715 

1 2 1 1 0.84488 0.78165 

2 1 1 1 -1.18625 0.00645 

2 2 1 1 -1.14191 0.61517 

1 1 1 1 

5 minutes 

-0.23463 -0.94184 

1 2 1 1 -0.82148 0.64777 

2 1 1 1 0.18226** 0.35197 

2 2 1 1 -0.00792 0.90203 

1 1 1 1 

15 minutes 

-1.03899 -1.02557 

1 2 1 1 0.64321 0.74152 

2 1 1 1 -0.18263 -0.65142 

2 2 1 1 -0.34252 0.43621 

Source: Calculation 

Table 5. Estimated ARFIMA – FIGARCH model for corn 

Model 

Frequency AIC Log-likelihood ARFIMA FIGARCH 

p d q p d q 

1 -0.39776 1 1 0.99548 1 

1 minute 

-13.0926 793.558 

1 -0.05075 2 1 -0.30754 1 -13.0736 793.413 

2 -1.16986 1 1 0.61251 1 -13.2406 803.436 

2 -1.34566 2 1 0.44105 1 -13.3265 809.589 

1 -0.07125 1 1 0.11486 1 

5 minutes 

-13.0612 793.669 

1 -0.31233 2 1 0.90809 1 -13.4803 819.819 

2 -1.21594 1 1 0.20319 1 -13.6409 828.451 

2 -0.19851 2 1 1.09931 1 -13.391 814.459 

1 0.62645 1 1 0.63532 1 

15 minutes 

-13.4284 817.707 

1 -0.22312 2 1 1.22133 1 -13.3427 798.104 

2 -1.34012 1 1 0.45682 1 -13.3424 796.207 

2 0.66512 2 1 0.63572 1 -13.8472 799.503 

Source: Calculation 

 

Tables 2 – 4 present information for Model Selection by Akaike information criterion 

(AIC). Table 9 shows for corn, according to the lowest AIC, the best model with 1 minute 

is ARFIMA (1, -0.05075, 2) – FIGARCH (1, -0.30754, 1), and the best models with 5 

and 15 minutes are ARFIMA (1, -0.07125, 1) – FIGARCH (1, 0.11486, 1) and ARFIMA 

(2, -1.34012, 1) – FIGARCH (1, 0.45682, 1), respectively.   

For wheat (Table 3), the best model with 1 minute is ARFIMA (2, -0.13029, 2) – 

FIGARCH (1, 0.15722, 1) and the preferred ones with 5 and 15 minutes are ARFIMA 

(1, -0.23847, 1) – FIGARCH (1, 0.74475, 1) and ARFIMA (1, -0.83587, 2) – FIGARCH 

(1, 0.8764, 1), respectively.  

For soybean (Table 4) , the best model with 1 minute is ARFIMA (2, -1.14191, 2) – 

FIGARCH (1, 0.61517, 1) and the best ones with 5 and 15 minutes are ARFIMA (1, -
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0.23463, 1) – FIGARCH (1, -0.94184, 1) and ARFIMA (1, 0.64321, 2) – FIGARCH (1, 

0.74152, 1), respectively. 

Table 6. Estimated ARFIMA – FIGARCH model for wheat 
Model 

Frequency AIC 
Log-

likelihood 
ARFIMA FIGARCH 

p d q p d q 

1 -0.98159 1 1 0.48637 1 

1 minute 

-13.178 798.682 

1 -0.79205 2 1 0.59901 1 -13.2589 804.536 

2 -1.07788 1 1 0.33558 1 -13.6308 826.849 

2 -0.13029 2 1 0.15722 1 -13.0122 790.73 

1 -0.23847 1 1 0.74475 1 

5 minutes 

-13.1212 797.269 

1 0.48255 2 1 0.15292 1 -13.426 816.561 

2 -0.05951 1 1 0.12026 1 -13.906 844.363 

2 0.21907 2 1 0.72335 1 -13.7728 837.367 

1 -1.00724 1 1 -0.091 1 

15 minutes 

-13.2918 809.511 

1 -0.83587 2 1 0.8764 1 -13.2406 803.436 

2 -1.09288 1 1 0.4321 1 -13.3265 809.589 

2 0.38471 2 1 0.3326 1 -13.6409 793.669 

Source: Calculation 

Table 7. Estimated ARFIMA – FIGARCH model for soybean 

Model 
Frequency AIC 

Log-
likelihood 

ARFIMA FIGARCH 

p d q p d q 

1 0.03110** 1 1 -0.06715 1 

1 minutes 

-13.1684 798.104 

1 0.84488 2 1 0.78165 1 -13.1201 796.207 

2 -1.18625 1 1 0.00645 1 -13.1751 799.503 

2 -1.14191 2 1 0.61517 1 -13.0572 793.434 

1 -0.23463 1 1 -0.94184 1 

5 minutes 

-13.2842 807.05 

1 -0.82148 2 1 0.64777 1 -13.339 811.341 

2 0.18226** 1 1 0.35197 1 -13.3687 812.124 

2 -0.00792 2 1 0.90203 1 -13.5311 822.867 

1 -1.03899 1 1 -1.02557 1 

15 minutes 

-13.2413 806.479 

1 0.64321 2 1 0.74152 1 -13.0122 798.682 

2 -0.18263 1 1 -0.65142 1 -13.1212 804.536 

2 -0.34252 2 1 0.43621 1 -13.426 826.849 

Source: Calculation 

Table 11. Value at Risk and Expected Shortfall 

Risk Frequency 1% 5% 10% 

Value at Risk: VaR 

1 Minute 8.98% 6.33% 4.92% 

5 Minutes 8.99% 6.44% 5.04% 

15 Minutes 8.89% 6.24% 4.88% 

Expected shortfall: ES 

1 Minute 10.46% 7.95% 6.75% 

5 Minutes 10.22% 8.00% 6.85% 

15 Minutes 9.98% 7.83% 6.67% 

Source: Calculation 

In this paper we focused on realized volatility and ARFIMA – FIGARCH model to 

calculate VaR and portfolio optimization in agricultural futures. The calculated VaR and 

ES at 1 %, 5 %, and 10 % of the equally weighted portfolio of three agricultural futures 

(corn, wheat, and soybean) are shown in Table 11.  All estimated ES’s are higher than 

VaR. In portfolio with 1 minute VaR and ES are 4.92%, 6.33% and 8.98% at 10%, 5% 
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and 1% level; and 6.75%, 7.95% and 10.46% at 10%, 5% and 1% level, respectively. 

In portfolio with 5 minutes VaR and ES are 5.04%, 6.44% and 8.99% at 10%, 5% and 

1%; and 6.85%, 8% and 10.22% at 10%, 5% and 1% level, respectively. In portfolio with 

15 minutes VaR and ES are 4.88%, 6.24% and 8.89% at 10%, 5% and 1%; and 6.67%, 

7.83% and 9.98% at 10%, 5% and 1% level, respectively. 

Table 12 shows the optimal investment proportion of agriculture portfolio with minimum 

risk (ES 5%) with different frequency--namely 1 minute, 5 minutes and 15 minutes. The 

optimal portfolio was calculated by minimizing the portfolio risk under minimization of 

expected shortfall with respect to maximization of returns. The results show that most 

of the investment proportion is corn while wheat and soybean have little of the 

investment proportion. In portfolios with 5 minutes, there are negative returns; while in 

portfolios with 1 minute and 15 minutes, there are positive returns. 

Table 12. Portfolio Optimization 

Portfolio 
1 Minute 5 Minutes 15 Minutes 

Wheat Corn Soybean Return Wheat Corn Soybean Return Wheat Corn Soybean Return 

1 0.16 0.65 0.18 0.0007 0.22 0.54 0.24 -0.0006 0.2 0.58 0.22 0.0005 

2 0.13 0.68 0.17 0.0007 0.2 0.56 0.24 -0.0005 0.18 0.62 0.2 0.0005 

3 0.1 0.71 0.17 0.0007 0.17 0.58 0.25 -0.0005 0.15 0.67 0.18 0.0005 

4 0.07 0.75 0.17 0.0007 0.15 0.6 0.25 -0.0005 0.12 0.71 0.17 0.0006 

5 0.05 0.79 0.15 0.0008 0.12 0.63 0.25 -0.0005 0.09 0.76 0.15 0.0006 

6 0.03 0.82 0.14 0.0008 0.09 0.65 0.25 -0.0005 0.06 0.8 0.14 0.0006 

7 0 0.86 0.13 0.0008 0.07 0.67 0.26 -0.0004 0.03 0.85 0.12 0.0006 

8 0 0.9 0.09 0.0008 0.04 0.7 0.26 -0.0004 0.01 0.89 0.1 0.0006 

9 0 0.95 0.04 0.0008 0.02 0.72 0.26 -0.0004 0 0.94 0.06 0.0006 

10 0 1 0 0.0009 0 1 0 -0.0004 0 1 0 0.0007 

Source: Calculation 

5. Conclusion 

The growing importance of intraday activities such as the high-frequency and the 

algorithm trading in the financial market has motivated us to propose the realized 

volatility and ARFIMA-FIGARCH model approach for improving the portfolio 

optimization and VaR evaluation explicitly using intraday returns. Therefor this study, 

we applied concept long memory property, realized volatility high-frequency and to 

evaluate risk of agriculture future. This paper aims to construct the optimum portfolio 

from the most commonly traded agricultural commodity futures, namely corn, wheat and 

soybean with three different frequencies namely 1 minute, 5 minutes, and 15 minutes. 

The dataset starting from November 2015 to December 2016 covering 560,160 of tick 

data and totally 389 days were collected from Bloomberg database. In the first step, we 

calculated realized volatility of corn, wheat and soybean from Realized Covariance 

Measure (rCov) with the three different frequencies as stated above. We tested long-

memory property by R/S test and GPH test and found that corn, wheat and soybean 

futures returns have the long memory feature for every frequency. In the next step, we 

estimated realized volatility and simulated returns by ARFIMA – FIGARCH. Finally, we 

constructed the optimum portfolio. From the results on optimum portfolio, it is suggested 

that investment be made more than half in corn followed by soybean and wheat, 

respectively. The estimated VaR and ES of portfolio in period t+1 at 1%, 5% and 10% 

level are 8.98%, 6.33%, 4.92% and 10.46%, 7.95%, 6.75% respectively. 
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