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Abstract:
The goal of this research is to estimate the parameter of logistic regression model. The coefficient
parameter is evaluated by maximum likelihood, ridge regression, markov  chain  monte carlo
methods. The logistic regression is considered the correlation between binary dependent variable
and  2, 3, and 4 independent variables which is generated from normal distribution, contaminated
normal distribution, and t distribution. The maximum likelihood estimator is estimated by differential
the log likelihood function with respect to the coefficients. Ridge regression is to choose the unknown
ridge parameter by cross-validation, so ridge estimator is evaluated on a form of maximum
likelihood method by adding ridge parameter. The markov  chain  monte carlo estimator can
approximate from Gibbs sampling algorithm by the posterior distribution based on  a probability
distribution and prior probability distribution.  The performance of these method is compare by
percentage of predicted accuracy value. The results are found that ridge regression are satisfied
when the independent variables are simulated from normal distribution, and the maximum likelihood
outperforms on the other distributions.
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Introduction 

Multiple regression analysis is to learn about the association between several independent 

variables and dependent variable for create the multiple regression function which is used to 

predict and estimate dependent given the independent variables. The assumption of multiple 

regression analysis involves checking to make sure that the data  can actually using multiple 

regression such as the dependent and independent variables on a continuous scale. But the 

dependent variable is a categorical  variable based on discrete scale, the logistic regression can 

be used to construct the model for forecasting  dependent variable as the multiple regression 

analysis.  

Logistic regression analysis studies the relationship between a categorical dependent variable 

and a set of independent variables by estimating probabilities using a logistic function.  When the 

dependent variable has only two values, for example “dead“ vs. “alive“  or “win“ vs. “loss“, it’s 

called binary logistics regression. For multinomial logistic regression, the dependent variable has 

more two values. The objective of logistic regression is to report the model for predicted values 

from independent variables when the independent variable shows the continuous variable and no 

multicollinearity problem.   

The maximum likelihood method is a well known method for estimating parameter of statistical 

model given observation. The estimator is estimated by maximize the likelihood function given the 

parameter. Lee, Silvapulle  (1988) observed that a ridge type estimator is at least as good as the 

maximum likelihood estimator in terms of total and prediction mean squared error criteria. Duffy,   

Santner (1989) considered the maximization of the log-likelihood function with a penalty value or 

called ridge parameter. The use of ridge regressin is developed from regression analysis by 

choosing the ridge parameter. Cessie, Houwelingen (1992) proposed ridge parameter in logistic 

regression by using cross-validation. The Bayes’ method uses both a probability distribution and 

prior probability distribution to approach a posterior probability distribution (Bradley, Thomas,  

2008). Then it is difficult to demonstrate a posterior distribution from a probability distribution and 

prior probability distribution. However, the Markov Chain Monte Carlo (MCMC) method (Gilks, 

Richardson, Speigelhalter, 1996)  can approximate the estimator from Gibbs sampling algorithm 

(Geman, Geman,  1984) based on the posterior distribution. 

In this paper, we focus to estimate the coeffifient paremater on logistic regression when the 

dependent variable occurs in binary data. The maximum likelihood, ridge regression, MCMC 

methods are used to improve the parameter estimates by further predictions. Various methods to 

determine the parameter estimation are discussed in method for estimation. In simulation study, 

logistic regression is presented the detail of simulation  data based on independent variable, and 

the results are by percentage of predicted accuracy.   

Logistic Regression Model 

The logistic regression consisted of binary dependent variable ( iY ) and independent variables 

( ix ), where 1 2, ,...,i i i kix x x x= , k is a number of independent variable, and 1,2,...,i n= is a 

number of observed data. The most idea is to let ( )ip x  be a probability function in term of linear 

function of ix . Let  log ( )ip x  be a linear function of ix , so that changing an independent 
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variables multiplies the probability. The easiest modification of  log ( )ip x  which has an unbound 

range is the logistic transformation as 
( )

log
1 ( )
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i

p x

p x−
. Formally, the logistic regression model is 

shown that  
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where k  is a number of independent variable, and 1,2,...,i n=  is a number of observed data. 

The probability function follows the logistic regression model  
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The classification rate is predicted  by 1iY = , when ( ) 0.5ip x  , and 0iY = , when ( ) 0.5ip x  .  

 
Method for Estimation 

Maximum likelihood Method 
Logistic regression predicts the probability function by classification on  dependent 

variable in 2 classes. The likelihood function is then  
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The log likelihood function turns into sum as : 
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The maximum likelihood estimator is approximated by differential the log likelihood 

function with respect to the parameters, and set the derivatives equal to zero.  The log 

likelihood takes the derivatives with respect to one parameter of , 1, 2,...,j j k =  by 
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Above equation can not to set as zero and solve exactly, so we can approximate the 

parameter by numerical method as 0 1
ˆ ˆ ˆ ˆ( , ,..., )ML k   = . 

Ridge Regression Method 

Hoerl, Kennard (1970) proposed the method to solve the problems when the independent 

variables have multicorllinearity and get the minimum mean square error or called ridge 

regression method.  From the multiple linear regression analysis, the least squares 

estimation is normally used to approximate the parameter of multiple linear regression 

model by 

     
1ˆ ( ' ) 'X X X Y −= ,                                                   (4) 

where ̂ is a vector of unknown parameter as ( 0 1, ,..., k   ), X is an independent 

variable matrix by the ( 1k + ) columns and n  rows,  and Y is a vector of dependent 

variables as ( 1 2, ,..., nY Y Y ). 

The idea of ridge regression estimation is a procedure based on adding ridge parameter 

as small positive quantities to the diagonal of matrix 'X X . The ridges regression 

estimators are estimated by 

              1ˆ ( ' ) ' , 0R X X I X Y  −= +  .                                                     (5) 

It can be used to obtain an estimated parameter with smaller mean square error. The 

cross-validation method is chosen to  find the smallest  ridge parameter ( ).  

Markov Chain Monte Carlo Method 
The Markov Chain Monte Carlo (MCMC) (Gamerman, 1997) method is operated by 

sequentially sampling parameter values from a Markov Chain at stationary distribution 

which is desired from posterior distribution. The Gibbs sampling (Gelfand, Hills, Racine-

Poon, Smith, 1990) is an algorithm for MCMC computing. We carry out the WinBUGS 

Program (Lunn, Spiegelhalter, Thomas, Best, 2009) to obtain the estimating estimator 

from the posterior distribution function based on MCMC process.   

 The logistic regression is used the logit model following 
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and we can model the probability of each subject i as a Bernoulli distribution and the prior 

distribution is considered the normal distribution.  The likelihood function can be implied as   

1
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and the posterior distribution function is the product of the joint prior distribution,  the 

likelihood function in terms of 
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The Gibbs sampling algorithm of logistic regression model is specified in hierarchical 

model following 
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The MCMC samples of  0 1
ˆ ˆ ˆ ˆ( , ,..., )MCMC k   =  obtain the posterior mean as coefficient 

estimators of logistic regression by ˆ
MCMC . 

Simulation Study 
In this section, we show the detail of a simulated data  that we conducted in order to compare the 

performance of maximum likelihood, ridge regression, and markov chain monte carlo methods for 

logistic regression. To simulate data, we generated  data independent variables in class of  2,3, 

and 4 variables based on normal distribution at mean zero and variance one, contaminated 

normal distribution at contaminated data with 5 and 10 percent (p = 0.05, 0.1) on variance of nine, 

and t distribution at 3 degree of freedom by R statistical software. The sample size is set as 30, 

50, and 100 with 500 times in each cases. The set of coefficient parameter on logistic regression 

0 1 2( , , ),   0 1 2 3( , , , ),   
 
and 0 1 2 3 4( , , , , )      is defined as constant value based on 

respective independent variable. 

The example of two independent variables, the probability function follows the logistic regression 

model  
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1
( ) .

1 i i
i x x

p x
e

  − + +
=

+
 

If ( ) 0.5ip x  , the dependent variables will be define 1iY = , and 0iY = , when ( ) 0.5.ip x   

After the estimating parameter of 3 methods, we obtain the coefficient parameter as    

0 1 2
ˆ ˆ ˆ( , , )   , then we approximate the probability function by 
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The dependent values are predicted by ˆ 1iY =  when ˆ( ) 0.5ip x  , and  ˆ 0iY =  when 

ˆ( ) 0.5ip x  . 
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The confusion matrix is a table that is often used to describe the performance of a classification 

model on a set of predicted data for which the actual data are known following on Table 1.  The 

predicted accuracy is computed by  

                
.

TP TN
Accuary

TP TN FP FN

+
=

+ + +
 

Table 1 : The confusion matrix of actual data ( iY ) and predicted data ( ˆ
iY )   

 

Predicted 
Data 

Actual Data 

1iY =  0iY =  

ˆ 1iY =  True Positive 

 (TP) 

False Positive 

 (FP) 

ˆ 0iY =  False Negative  

(FN) 

True Negative  

(TN) 

 
Results 
The estimating coefficient of logistic regression model is obtained from the maximum likelihood 

(ML), ridge regression (Ridge), and markov chain monte carlo (MCMC) methods which 

transformed to logit model and classified to binary dependent variable. Table 2-4 present the 

average percentage of predicted accuracy on previous methods. The maximizing percentage are 

illustrated the performance of these methods. 

 

Table 2 : The average percentage of predicted accuracy of maximum likelihood (ML), ridge 

regression (Ridge), and markov chain monte carlo (MCMC) methods  on 2 independent variables 

Distributions Sample 
size 

ML Ridge MCMC 

 

Normal 

n=30 93.56 95.70 49.90 

n=50 95.82 96.04 49.44 

n=100 97.72 96.28 49.62 

Contaminated 
Normal  
(p=0.05) 

n=30 93.54 80.52 51.10 

n=50 95.08 78.00 48.98 

n=100 97.72 76.88 50.94 

Contaminated 
Normal 

n=30 93.52 77.27 49.44 

n=50 95.65 75.85 48.92 
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(p=0.1) n=100 97.67 77.17 50.37 

 

t   

n=30 93.66 89.34 51.76 

n=50 95.83 89.30 51.26 

n=100 97.57 90.21 50.34 

 

Table 3 :  The average percentage of predicted accuracy maximum likelihood (ML), ridge 

regression (Ridge), and markov chain monte carlo (MCMC) methods  on 3 independent variables 

 

Distributions Sample 
size 

ML Ridge MCMC 

 

Normal 

n=30 91.90 95.95 49.57 

n=50 94.72 96.90 49.65 

n=100 97.20 97.24 50.38 

Contaminated 
Normal  
(p=0.05) 

n=30 91.63 80.78 51.08 

n=50 94.52 78.77 48.89 

n=100 97.06 79.70 49.50 

Contaminated 
Normal 
(p=0.1) 

n=30 94.54 78.12 49.36 

n=50 94.54 79.30 48.53 

n=100 97.02 81.59 50.11 

 

t   

n=30 91.70 91.20 50.38 

n=50 94.77 91.20 49.84 

n=100 97.00 92.58 49.66 
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Table 4 : The average percentage of predicted accuracy of maximum likelihood (ML), ridge 

regression (Ridge), and markov chain monte carlo (MCMC) methods  on 4 independent variables 

 

Distributions Sample 
size 

ML Ridge MCMC 

 

Normal 

n=30 90.00 95.42 48.46 

n=50 96.73 96.58 50.58 

n=100 96.57 97.30 50.34 

Contaminated 
Normal  
(p=0.05) 

n=30 89.90 81.63 48.74 

n=50 93.42 80.66 49.39 

n=100 96.31 81.36 49.74 

Contaminated 
Normal 
(p=0.1) 

n=30 85.99 80.78 50.70 

n=50 93.34 82.19 50.60 

n=100 96.30 84.13 50.19 

 

t   

n=30 90.19 90.89 48.99 

n=50 93.59 92.06 51.46 

n=100 96.46 92.90 49.27 

 

From Table 2-3, the percentage of ridge regression method is a maximum average percentage 

values for all sample size when the independent variable is simulated from normal distribution. 

For maximum likelihood method, contaminated normal and t distribution via independent 

variables appear the maximum average percentage values. The remaining Table 4 of four 

independent variables, the results are similar the Table 2-3 except n=50 with normal distribution 

and  n=30 with t distribution.     

 
 
Conclusion 
In this research, we generated independent variables from normal distribution,  contaminated 

normal distribution, and t distribution. The  maximum likelihood, ridge regression, and markov 

chain monte carlo  methods are used to estimate parameter on ridge regression and classified the 

binary dependent variable. The ridge regression is a good performance when the independent  

variable  is presented on the normal distribution in most cases. Therefore, the maximum 

likelihood method is a good fit when the independent variables is played on contaminated normal 

distribution and  t distribution.    
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