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Abstract:
Log-normal process and martingale restriction bring some bias on the premium for option pricing
models. It is possible to reduce the bias by adding more parameters like jump diffusion, stochastic
volatility or regime switching. In this case closed form solutions and numerical approximations
suffer from the dimension of the problem. Monte Carlo integration then appears to be unique
solution for high dimensional calculations. However variance of the output of interest should be
decreased in Monte Carlo applications in order to have confident results. The method of Importance
Sampling can be used in an attempt to reduce variance. In this study we test the log-normal
process for options pricing via Importance Sampling Monte Carlo. Our analysis is based on the
theory of variance reduction and we don’t have any empirical data. Numerical results indicate that
the risk neutral density should be substituted in the range of moneyness.
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1. INTRODUCTION 

 In developed financial markets firms and individuals seek new methods to 
minimize the risk arises from their transactions. Options allow investors to control the 
risk level when included to the portfolios. Huge amount of transactions in the options 
market makes options pricing one of the most attractive topics. Very famous Black 
and Scholes (1973) model lightened options pricing process. Their assumptions have 
been analyzed enormously. In this study we test the log-normal process which is 
found to be restrictive in some cases. 

 It is impossible to specify the probability distribution of risky asset returns. Options 
pricing is based on a different probability space that calculations are done with 
respect to arbitrage free principle and risk neutral pricing. In this probability space 
asset price is simply an expectation of the discounted measure of its terminal value. 
The expectation is taken under an equivalent martingale measure which is a mapping 
of the original probability distribution of asset returns. Arbitrage free principle provides 
existence of an equivalent martingale measure which is not unique if the market is 
incomplete, Liu and Zhao (2013). It is assumed that logarithmic returns have an 
equivalent normal distribution in Black/Scholes model. Hence, distribution of the asset 
price becomes log-normal. Merton (1976) added price jumps to the log-normal 
process. However final model cannot prevent some bias on the premium which 
increases with the maturity of the option. There are two main reasons for the bias. 
First one is market crashes not reflected by log-normal process with constant 
volatility. Hull and White (1987) introduced basic solution to stochastic volatility 
models excluding correlation between the volatility and the price of the underlying 
asset. Heston (1993) and Aїt-Sahalia and Kimmel (2006) tried to find closed form 
solutions for general stochastic volatility models. Second bias effect comes from the 
market frictions such as transition costs and bid-ask spread of assets. Longstaff 
(1995) analyzed empirical data and showed that bias is greater for out-the money and 
in-the money options. Longstaff (1995) calculated implied volatility of the S&P index 
call options for two years and found the result that implied volatility of the S&P index 
options has a smile pattern. This is known as volatility smile anomoly and studied by 
various authors like Rubinstein (1994), Neumann (1998), Stein (1989) and Jackwert 
and Rubinstein (1996). Although Black/Scholes model imposes to observe the current 
underlying price from the market, Longstaff (1995) relaxed the underlying S&P index 
values and had the observation of implied index values being higher than the actual 
index values in 99 percent of his data which simply shows that it is more expensive to 
purchase the underlying asset from options market than the stock market. This is 
obviously the case of more transaction costs of options market. But Jackwert and 
Rubinstein (1996) showed that even the transaction costs remain constant the 
volatility smile happens to have different patterns for options with different underlying 
assets which proves that the only reason for the bias is not market frictions. Longstaff 
(1995) claimed if it is allowed in calculations to have the underlying asset price 0.4 
percent more than its market value greater precision is obtained in means of smaller 
bias for option prices. Longstaff (1995) defined this basic assumption as martingale 
restriction. Estimating the implied index value and the implied volatility is the same as 
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estimating the first and the second moments of the risk neutral density which is 
assumed to be log-normal in most cases. Hence, diversification of the model results 
and empirical data is mostly caused by the log-normal process itself. Neumann (1998) 
used two log-normal distributions as a mixed distribution to fit empirical data better. 
Neumann (1998) calculated the parameters of the mixed log-normal distribution with 
the least squares error technique so as to minimize the diversification. Most of the 
articles in the area refer to the term selected for the input data. Then the analysis gets 
dependent to the market events. The contribution of our study is that we do not use 
empirical data to test the risk neutral density. 

 Other advances to come up with the bias of Black-Scholes model are based on 
regime switching models. Bastani et al, (2013) study on American options with a 
radial basis collacation method. Boyle and Draviam (2007) studied on exotic options 
under regime switching model. Liu and Zhao (2013) deal with lattice methods for two 
underlying assets in regime switching model. Single risk-neutral density is not enough 
to represent the dynamics of option prices. Therefore randomly changing combination 
of Lévy processes included to the models. Brownian motion is the only Lévy process 
having continuous patterns. On the other hand, regime switching models with general 
Lévy processes are discrete realizations of the actual process whose states are 
determined by a continuous time Markov chain. Thus, Markov chain model allows to 
specify long run equilibrium probabilities. The rate of return of the regime switching 
models consisting of a number of Lévy processes with different parameters 
converges to the expected risk neutral return.  

 Remainder part of the paper is organized as follows. Section 2 is devoted to the 
options pricing basis with log-normal process. Section 3 is devoted to the Monte Carlo 
integration framework and Importance Sampling (IS) technique. Section 4 is 
concerned with numerical study. Firstly key factors in our simulation model are 
defined. Numerical results are discussed next. Black/Scholes model, Monte Carlo and 
IS Monte Carlo results are compared in the sense of variance reduction capability. 
Then statistical test results are displayed. And finally conclusions are set. 

2. OPTIONS PRICING IN CLOSED FORM 

 Black and Scholes (1973) model is based on the main assumption of normal 
distributed logarithmic returns. The underlying asset price follows a geometric 
Brownian motion which is also called log-normal process. Then underlying price 
dynamics were reflected by a partial differential equation (PDE) as 

 ��� = ����� + ����	� (2.1) 

where �� ∈ �� is the spot price, � is annual drift, � is annual volatility of the underlying 
and �	� is Wiener process. One easy way to show the derivation of this PDE is as 
follows: For one period risky asset price can be expressed as 

 �� = ��
��� (2.2) 

where +∈�u  is a random variable which includes all economic information to change 
the price. Next step is to have logarithm of both sides and to start from the initial state 
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 log �� = log �� + � log ��.�
���  (2.3) 

If we have  log � = � in equation (2.3) as a normal random variable with � ~N��, �2� as 
imposed in Black and Scholes (1973) model, logarithmic price also becomes a normal 
random variable. The expectation and variance of the logarithmic price is  E log ��! =log �� + ��  and  Var log ��! = �2�, respectively. Then standard normal z can be 

expressed for stochastic random variable %� = log &'&(  as 

 ) = %� − ���√�  (2.4) 

For stochastic random variable %� = log �� − log �� equation (2.4) can be arranged as 

 log �� − log �� = �� + �√�), (2.5) 

where subscript i refers to the standard normal random number here. If we have 
differential for both sides in equation (2.5) we get	 

 � log �� = ��� + ��	� (2.6) 

since √�), in equation (2.5) is a random variable satisfying Brownian motion 	�./�0 −./00~N/0, �0� and therefore can be substituted with  �	�. Finally in equation (2.6) 

differential of logarithmic price is substituted with �	log�� = 2&'&'   and equation (2.1) is 

found. 

Parabolic PDE has a boundary at expiration time � = 3 which serves as the option 
price. Payoff function for call option is 	456/�� − 7, 00 where K is exercise price. When �� < 7 call option pays off zero. And payoff function for put option is 456/7 − ��, 00. 
Call option and put option prices were calculated by solving PDE in Black and 
Scholes (1973). 

3. OPTIONS PRICING WITH MONTE CARLO SIMULATION 

 Option price (so called premium) is the discounted value of the payoff under a 
riskless interest rate. Payoff is simply an expectation of the return determined by 
stochastic price vector in arbitrage free environment. E.g European put option 
premium is calculated with 

 9:/�, 30 = ; <
=>/7 − �>0�!. (3.1) 

The terminal value of the underlying price should be identified for the use of equation 
(3.1). In option pricing models future price of the underlying is based on a random 
walk. It is possible to generate underlying price vector with an equivalent martingale 
measure. The future price is calculated with the following formula for log-normal 
process. 

 �,�� = �,<?=
@AB C∆��@√∆�EF 	, ),~N/0,10 (3.2) 
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where r is the riskless interest rate. �� is observed from the market. Time frame ∆� is 
set in years and might have ∆� = 1/252 for working days per year in case of daily 
closing prices are simulated. 

3.1 Monte Carlo Integration 

 Monte Carlo integration technique is widely used in derivatives pricing. Many 
problems can be formulated as integrals over a single model distribution or highly 
multi-modal distributions in result of expectations which can be shown as 

 JK = ;K L/M0! = N L/M0O/60�M.
PQ  (3.3) 

where L/M0 is a real valued function. The notation JK , ;K denotes that the expectation is 
taken with respect to density O/. 0 which belongs to the d-dimensional probabilistic 
state space Ω. If it is hard to find a closed form solution to equation (3.3) Monte Carlo 
simulations can be warranted to provide approximate results. Simulations driven by 
random inputs will produce random outputs. And those random outputs are the 
estimation of the exact results. The accuracy of this estimation strongly depends on 
quality of sampling which can be improved in two ways:  

• increasing the cardinality of sampling or, 

• introducing some kind of selection rules that make it more representative.  

The first choice is commonly known limited way whereas the second requires to apply 
some special techniques. One of them is explained in the next section. 

3.2 Importance Sampling as a Variance Reduction Technique 

 In Monte Carlo applications variance of the output random variable should be 
reduced without disturbing its expectation, which means smaller confidence intervals. 
Importance Sampling (IS) improves the quality of sampling and used for variance 
reduction purposes. IS introduces definite selection rules to generate most likely 
configurations to obtain more accurate values of statistical averages. Certain values 
of the input random variables in a simulation have more impact on the parameter 
being estimated than others. If these important values are emphasized by sampling 
more frequently, then the estimator variance could be reduced. Hence, the basic 
methodology is to choose a new distribution which encourages the important values. 
Yön and Goldsman (2006) deal with some useful biasing methods. This use of a 
biased distribution will result in a biased estimator. However, the simulation outputs 
are weighted to correct for the use of the biased distribution, and this ensures that the 
new IS estimator is unbiased, Broadie and Glasserman (1997). IS can be carried out 
as in the following way: 

 JR = ;R SL/M0 O/M0T/M0U = N L/M0 O/M0T/M0 T/60�M,.
PQ  (3.4) 

Random samples are generated from T/. 0 ∈ Ω which is called IS density. T/60 enables 

to calculate the correction factor  
O/M0T/M0.  Correction factor is sometimes called weight 

function. Based on sample weights accumulated during sampling the correction factor 
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compensates for statistical fluctuations and lead to a lower variance. In equation (3.4) 
the IS density T/60 should assign higher probabilities to important region while holding JK = JR, Yön (2007). Then the estimator can be calculated as 

 JRV = 1W �XL/MY0Z O�6[�T�6[�
2

[�� \]
,��  (3.5) 

where N is the replication number and d is the dimension of the multivariate 
underlying distribution. Note that O/. 0 and T/. 0 are two independent densities. Finally 
Mean Squared Error (MSE) of the estimator is calculated in usual form  

 ^�; = ∑ �J, − JRV�B],��/W − 10  (3.6) 

The successful IS density leads lower possible MSE. Detailed features of IS densities 
were given at Yön (2007) and Broadie and Glasserman (1997). 

4. NUMERICAL RESULTS  

 We test log-normal process from a variance reduction point of view by nominating 
Importance Sampling (IS) technique. We first carry out crude Monte Carlo simulation 
and then run IS for the same input variables. In order to measure the performance of 
the log-normal process we define two key factors. The first one is Variance Reduction 
Factor (VRF) which is the ratio of variance outputs of both trials. We calculate VRF by 
dividing the Mean Squared Error (MSE) of crude Monte Carlo simulation (using log-
normal density) to the MSE of IS Monte Carlo simulation (using IS density) 

 9`a = ^�;bcd^�;e&cd , 9`a > 0 (4.1) 

where MSE is the smoothest estimator of variance. Secondly we define Importance 
Sampling factor (ISF) as being the ratio of the number of successes encountered 
during the simulation time. A success refers to a positive value of payoff function at 
the end of the replication time. Zero payoff is considered as a fail which just increases 
the MSE. We have one million replications for each input set. Every replication results 
in a success or fail. Simply ISF is calculated as 

 g�a = ∑��hh<iie&cd∑��hh<iibcd , g�a > 0 (4.2) 

We define ISF in order to explain the changes in VRF. Note that nominator and 
denominator subscripts are different for ISF and VRF. We keep this notation to make 
both key factors in the same direction. Thereby we can observe that increase in the 
VRF is provided by increase in the ISF. If we somehow get high variance reductions 
we can conclude that log-normal distribution doesn't fit well in specified regions. We 
tried to implement a number of underlying distributions as IS densities like Gama, 
truncated Pareto and mixture of log-normal distributions. We give the results for call 
and put options in Table 4.1 and Table 4.2, respectively. Numerical results indicate 
that it is possible to have high variance reductions for a wide range of moneyness.  
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Table 4.1: Black & Scholes premium, Monte Carlo simulation and IS Monte Carlo simulation results 
and VRF and ISF values are set in accordance for call options. The input set is {S={30,40,50,60,70}, 
K=50, r=10%, σ=20%, T=1 year}. 

S 

B&S Monte Carlo Simulation IS Monte Carlo 

VRF ISF Premiu
m 

Premiu
m Variance StdDev 

Premiu
m 

Varianc
e StdDev 

IS density 
drift 

3
0 0.05384 0.05341 0.35151 0.59288 0.05377 0.00285 

0.0533
4 r=0.62 

123.5
5 

58.5
3 

4
0 1.39496 1.39636 12.87750 3.58852 1.39372 0.84678 

0.9202
1 r=0.42 15.21 4.20 

5
0 6.63484 6.63941 64.83510 8.05203 6.65658 7.16481 

2.6767
2 r=0.29 9.05 1.53 

6
0 

15.1292
4 

15.1341
5 

133.3455
8 

11.5475
4 

15.1233
5 

12.9737
2 

3.6019
1 r=0.22 10.28 1.10 

7
0 

24.8157
2 

24.8201
8 

196.8173
5 

14.0291
6 

24.8281
7 

12.4177
3 

3.5238
8 r=0.19 15.85 1.02 

 

 

Table 4.2: Black & Scholes premium, Monte Carlo simulation and IS Monte Carlo simulation results 
and VRF and ISF values are set in accordance for put options. The input set is {S={30,40,50,60,70}, 
K=50, r=10%, σ=20%, T=1 year}. 

S 

B&S Monte Carlo Simulation IS Monte Carlo 

VRF ISF Premiu
m 

Premiu
m 

Varianc
e StdDev 

Premiu
m 

Varianc
e StdDev 

IS density 
drift 

3
0 

15.2957
1 

15.3028
2 

34.8589
4 5.90415 

15.2945
6 5.66185 

2.3794
6 r=0.01 6.16 1.02 

4
0 6.63684 6.64039 

33.8921
7 5.82170 6.63718 6.37729 

2.5253
3 r=-0.07 5.31 1.31 

5
0 1.87671 1.87079 

12.2618
9 3.50170 1.87448 1.39664 

1.1818
0 r=-0.20 8.78 2.90 

6
0 0.37111 0.37388 2.26548 1.50515 0.37207 0.09837 

0.3136
4 r=-0.33 

23.0
3 10.44 

7
0 0.05760 0.05862 0.32345 0.56873 0.05775 0.00347 

0.0588
8 r=-0.45 

93.3
0 49.65 

 

We fixed four input parameters  3 = 1 year, j = 10%, � = 10%,  7 = 50 and relaxed the 
spot price in the range of �� ∈  30,70! with unit increments. We developed an efficient 
C program that the simulation with one million replications takes just a few seconds. 
Figure 4.1a and Figure 4.1b show the graphs of key factors with respect to the spot 
price. Numerical results show that it is possible to have higher variance reductions for 
out-the money options. This implies that underlying stock dynamics can be 
represented better with an alternative IS distribution. Figure 4.2a and Figure 4.2b 
show key factors with respect to moneyness graphs for calls and puts, respectively. 
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Coefficient of determination, 2R  values are generally greater than 0.92 which shows a 
strong relation between VRF and ISF. On the other hand regression results do not 
reflect any relation for especially in-the money puts.  

 

Table 4.3: Regression results for the key factors VRF and ISF. The comparison of 2R values 
demonstrates strong relation for most of the option types except in-the money puts. 

CALL PUT 

SUMMARY OUTPUT   out-the money SUMMARY OUTPUT   

Regression Statistics Regression Statistics 

Multiple R 0.998867991 Multiple R 0.999533228 

R Square 0.997737264 R Square 0.999066673 

Adjusted R Square 0.997563207 Adjusted R Square 0.998994879 

Standard Error 1.639265215 Standard Error 0.728023266 

Observations 15 Observations 15 

SUMMARY OUTPUT   at-the money SUMMARY OUTPUT   

Regression Statistics Regression Statistics 

Multiple R 0.960646777 Multiple R 0.999284893 

R Square 0.92284223 R Square 0.998570298 

Adjusted R Square 0.914269145 Adjusted R Square 0.998411443 

Standard Error 0.158021041 Standard Error 0.093874356 

Observations 11   Observations 11 

SUMMARY OUTPUT   in-the money SUMMARY OUTPUT   

Regression Statistics Regression Statistics 

Multiple R 0.864050562 Multiple R 0.031463407 

R Square 0.746583374 R Square 0.000989946 

Adjusted R Square 0.727089787 Adjusted R Square -0.075856981 

Standard Error 1.310207471 Standard Error 0.52218281 

Observations 15   Observations 15 

 

5. CONCLUSIONS 

We show insufficient aspects of the log-normal process in options pricing. We used 
simulation and variance reduction technique. The possibility of high variance 
reductions shows that original risk neutral measure of log-normal distribution cannot 
completely reflect the underlying price dynamics. Better alternatives could be found 
by easy combination of continuous distributions or second choice is regime switching 
models with a number of Lévy Processes whose parameters are dynamically 
changing. Both approaches could be better in the form of a risk neutral density for 
different moneyness regions. We used importance sampling in our analysis. The 
basic idea is to compute a correction factor to the importance sampling estimates. 
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With proper weights the correction factor compensates for statistical fluctuations. 
Hence output variance is decreased without disturbing the mean estimator. Numerical 
results indicate that it is better to have different underlying distributions for different 
moneyness regions. The contribution of our study is that we do not use empirical data 
which is always term dependent. 
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