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Abstract

This paper presents a novel approach to asset allocation which builds up on

macroeconomic factors. Without doubt the financial return of asset classes are

interlinked with the economy. However, it is not that clear how to bring the finance

and economy world together within a portfolio’s asset allocation. I propose a direct

modeling of the weights with global macroeconomic risk factors. These risk factors

are not asset class specific but potentially related to the return of all asset classes.

In this paper I focus on three asset classes: stocks, bonds and the risk free asset.

The approach is robust, links macroeconomic factors to financial returns intuitively

and outperforms a standard 60/40 portfolio almost twice in terms of the Sharpe

Ratio - in sample and out of sample. This outperformance even remains to a large

extent when considering transaction or leverage costs.
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1 Introduction

Without doubt there is numerous evidence that the financial return of asset classes such

as stocks and bonds are interlinked with the economy. However, it is not that clear how

to bring both worlds together in an portfolio’s asset allocation.

By far the most prominent models in asset allocation are the models of Markowitz

(1952) and Black and Litterman (1992). In the approach of Markowitz (1952) asset class

returns and a covariance matrix related to these returns need to be estimated for the

asset allocation process. This induces the danger of adding up estimation errors and

often results in an unstable asset allocation. Moreover, Jacobs, Müller and Weber (2010)

show that a simple heuristic approach can outperform Markowitz and its variations cost-

efficiently.

In Black and Litterman (1992) the investor updates the information implicitly revealed

by the market with his own return expectations. Returns are usually assumed to follow

a normal distribution and as in Markowitz (1952) there is no obvious link between the

economy and the model’s proposed asset allocation.

In both approaches the investor needs to estimate the asset classes’ expected returns.

This is difficult and often subjective. Therefore I suggest a macro based parametric

asset allocation approach using a method proposed by Brandt, Santa-Clara and Valkanov

(2009) . Different to the original paper I do not consider the allocation of stocks within a

stock portfolio but focus on asset allocation. The weights are directly estimated through

global risk factors. Hence, there is no need to estimate expected returns.

The idea is that global risk factors drive the performance of asset classes and are

important for each asset class - in absolute terms or relatively. The challenge is to identify

those economic forces that cause expected returns and hence the weights to change. This

approach implicitly reveals capital market dynamics and how they translate into portfolio

weights. Changes of portfolio weights are derived directly as triggered by changes in the

global risk factors. Naturally, the importance or “loading” of each risk factor could be

different between asset classes. Examples for global risk factors are the ted spread or the

term spread which can both be interpreted as indicators for the health of the economy

and indicators for the expected performance of financial markets.

A similar approach relying on the method of Brandt, Santa-Clara and Valkanov and

global risk factors was followed by Herrero and Herrero (2009) who construct a hedge fund

strategy consisting of up to 46 long/short portfolios of various asset class pairs. From a

portfolio perspective this is a different approach to the one presented here as the asset

allocation is not considered directly but long-short-subportfolios are built and optimized

separately. These are then combined in a so called expected loss exceeding value at risk

methodology. A thorough out of sample and robustness discussion is missing.
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In this paper I focus on three asset classes: stocks, bonds and the risk free asset.

The results of the method suggested are promising. The strategy outperforms its bench-

mark, a standard 60/40 stock-bond-portfolio, significantly - the Sharpe Ratio is almost

doubled. Jensen’s Alpha measured relatively to the benchmark is positive and almost al-

ways significant apart from some model specifications when ρ gets large. The statistically

significant global risk factors have meaningful signs and are intuitive to interpret. The

model’s outperformance prevails when considering transaction costs or leverage costs and

an application of the model is straight forward due to stable and robust estimates of pa-

rameters and reasonable asset allocation weights. Although the ambition is not to find an

asset allocation tool which a portfolio manager follows unquestioned, the suggested asset

allocation approach in this paper can add significant value to the tactical asset allocation

process in terms of providing a framework to the asset manager.

The paper proceeds as follows. In section 2 I describe the methodology and idea behind

the model. Section 3 discusses the statistical approach. For estimation I use generalized

methods of moments and an iterative optimization routine which averts local maxima.

A way of testing whether the methodology and statistical approach is appropriate

to use for the asset allocation problem is to verify the proposed method on well known

examples of the literature. Therefore I compare the analytic results with the results of

the parametric portfolio approach. For this I discuss Merton (1969) and Campbell and

Viceira (1999) in section 4.

Since a large sample of data is crucial for the methodology to work I constrain myself

to US data and take the results as proxy for a global approach. The data is described in

detail in section 5. In section 6 results are presented and three models are discussed in

detail: a value and two momentum models.

In section 7 I include transaction and leverage costs to the model. As the definition

of the out of sample period is up to some degree arbitrary I perform several robustness

checks in section 8 to verify the performance of the model. Finally, section 9 provides a

summary of the paper.

2 Idea and Methodology

At each date t there is a fixed number of investable risky asset classes, N . The investor

faces the problem of allocating his funds among these asset classes at each point in time

such that his conditional expected utility of the portfolio returns is maximized. The

percentage allocation of his funds to asset class i at time t is denoted as wi,t. Each asset

class i has a return ri,t+1 measured from t to t+ 1. Similarly, the portfolio return is rp,t+1.

Suppose the return of these asset classes is associated with a vector of K risk factors, xt
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observed at date t. Assume the investor’s utility function u(.) is time separable. Then

the investor faces the following optimization problem

max
{wi,t}Ni=1

Et

[
u

(
N∑
i=1

wi,tri,t+1

)]
(1)

In contrast to Brandt, Santa-Clara and Valkanov (2009) the investor is not interested

in allocating his funds within a pure stock portfolio but in allocating his funds among

asset classes such as stocks and bonds. The asset class weights are parameterized by a

function f(.) which depends on the risk factors xt. Hence, not the returns, but the weight

given to the assets are directly related to the risk factors.

wi,t = f(xt; θi) (2)

It is important to observe that the k’th macroeconomic risk factor xk,t is the same for

each asset class i. However, the parameters θi,k with which this risk factor “loads” on the

weight wi,t of asset i can be different between asset classes. As in Brandt, Santa-Clara

and Valkanov (2009) suppose that the weighting function is linear

wi,t = w̄i,t + θ′ix̂t (3)

w̄i,t are benchmark weights and θ′ix̂t captures the deviation to these benchmark weights.

To ensure that the portfolio weights sum up to one a risk free asset with return rf,t+1

from t to t+ 1 at which the investor can borrow and lend serves as residual. The return

of the risk free asset is known at t. There is no leverage constraint in place, hence the

investor could borrow unboundedly. This is implicitly constrained later by introducing

leverage costs. Formally, at any time t the following condition must hold:

N∑
i=1

wi,t + wrf ,t = 1 (4)

where wrf ,t = 1 −
∑N

i=1wi,t ≡ 1 −
∑N

i=1 f(xt; θi) is the percentage weight of the risk

free asset at time t. This is similar to the condition that the k′th coefficient of the risk

free asset θrf ,k = −
∑N

i=1 θi,k. The utility maximization problem of the investor can then

be written as

max
{wi,t}Ni=1

Et

[
u

(
N∑
i=1

f(xt; θi)ri,t+1 + wrf ,trf,t+1

)]
(5)

As the coefficients are constant they maximize the investor’s conditional expected

utility not only at one given date but for all dates. Therefore the coefficients maximize
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the investor’s unconditional expected utility. However, the coefficients are not constant

across assets. Hence, the weight of each asset does not necessarily only depend on its risk

factors but could also depend on the asset class’ historic return. I account for this by

considering the asset class’ past return as a risk factor specific to the asset class.

This implies that the optimization problem (5) can be rewritten as the following

unconditional optimization problem with respect to the coefficients θi

max
θi

E[u(rp,t+1)] = E

[
u

(
N∑
i=1

f(xt; θi)ri,t+1 + wrf ,trf,t+1

)]
(6)

Finally, the sample analog is

max
θi

1

T

T−1∑
t=0

[u(rp,t+1)] =
T−1∑
t=0

[
u

(
N∑
i=1

f(xt; θi)ri,t+1 + wrf ,trf,t+1

)]
(7)

where wrf ,t = 1−
∑N

i=1 f(xt; θi). In the linear policy case the optimization problem is

max
θi

1

T

T−1∑
t=0

[u(rp,t+1)] =
T−1∑
t=0

[
u

(
N∑
i=1

(w̄i,t + θ′ix̂t) ri,t+1 + wrf ,trf,t+1

)]
(8)

where wrf ,t = 1−
∑N

i=1wi,t.

I assume constant relative risk aversion utility with risk aversion parameter ρ

u(rp,t+1) =
(1 + rp,t+1)

1−ρ

1− ρ
(9)

3 Statistical Approach

In order to maximize the investor’s utility the estimates θ̂i should satisfy the first order

conditions of the maximization problem (equation 8) for each parameter θi,k of each risky

asset class i and risk factor k. Thus N × K coefficients are estimated where N is the

number of risky assets and K the number of characteristics. The first order condition of

parameter θi,k is

1

T

T−1∑
t=0

h(rt+1, xt; θk,i) ≡
1

T

T−1∑
t=0

u′(rp,t+1) (x̂k,t(ri,t+1 − rf,t+1)) = 0 (10)

with

u′(rp,t+1) = u′

(
1 +

(
N∑
i=1

(w̄i,t + θix̂t)ri,t+1

)
+ wrf ,trf,t+1

)
(11)
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where

wrf ,t = 1−
N∑
i=1

(w̄i,t + θix̂t) (12)

Following the statistical approach of Brandt, Santa-Clara and Valkanov (2009) the

first order conditions can be interpreted as method of moments estimators, specifically as

moment conditions. Furthermore the asymptotic covariance matrix of this estimator is

(Brandt, Santa-Clara and Valkanov, 2009, and Hansen, 1982)

∑
θ

≡ V[θ̂] =
1

T
[G′V −1G]−1 (13)

with

G =
1

T

T−1∑
t=0

δht
δθ

∣∣∣∣
θ=θ̂

(14)

where θ are the stacked estimators. For estimation I use the statistical software R and

specifically the package GMM (Chausse, 2011). Since these conditions can not be solved

analytically an initial solution guess of θ is required by the numerical algorithm. As with

all numerical procedures local maxima could potentially be a problem. A first test on

whether there is a local maximum problem is to verify if the solution to the numerical

algorithm is independent of the initial solution guess. This test fails clearly. However,

this local maxima problem can be solved the following way:

1. In total K × N coefficients are estimated. For each of these coefficients an initial

value is defined. Suppose this initial value is drawn from a pool of m feasible initial

solution values for each coefficient.

2. Define the initial solution space with all permutations p of initial coefficient vectors.

For example in the case of 4 coefficients and three possible values for each coefficient

there are 81 initial coefficient vectors.

3. As either K,N or m gets large the initial solution space grows rapidly and therefore

the calculation time to test all possible solutions. Therefore j initial solution vectors

are drawn from the initial solution space, where j ≤ p.

4. Start the optimization procedure with j initial solution vectors. This results in

j solutions which should be similar to each other. If they are similar stop the

calculation. Else continue:

5. Calculate the first and third quantile value of the solutions for each coefficient.
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6. Replace the old initial solution values with the first and third quantile as calculated

and the m−2 values equally distributed within the first and third quantile. Do this

for each coefficient

7. Calculate the j solutions to these initial values. If they are similar, stop. Else do

the following loop:

7.1 Calculate the first and third quantile value of the solutions for each coefficient.

7.2 If the difference between the first and third quantile is smaller than the values

for the first and third quantile of the previous initial solution values replace the

previous initial solution values with the corresponding first and third quantile

values as calculated and the m − 2 values equally distributed within the first

and third quantile. Do this for each coefficient.

The converged solution of this optimization routine is the best with respect to utility

compared to all other and previous solutions. Repeating the optimization with the same

or different parameters results in practically the same final solution, i.e. less than a

one digit percent deviation between coefficients can occur. This has no influence on the

significance or the sign of the coefficients, neither on the return series. I take this as

enough evidence to have found the global optimum.

4 Verification of the Method

A way of testing whether the methodology presented is appropriate for the asset allocation

problem is to verify the proposed method on well known examples of the literature and

compare the analytic results with the results of the parametric portfolio approach. In the

following section I discuss two models: Merton (1969) and Campbell and Viceira (1999).

4.1 Merton (1969)

Merton’s portfolio problem (1969) states that an investor who lives from time 0 to T

decides at each time t about his consumption ct and how much to invest into a risky asset

wt and how much to invest into a riskless asset wrf ,t earning the risk free rate rf . These

decisions determine the investor’s wealth path Vt. The investor’s subjective discount rate

is δ and his time separable utility function is denoted by u(.). His objective function in

continuous time is

max
wt,ct

u(V0) = E
[∫ T

0

e−δsu(cs)ds+ e−δTu(VT )

]
(15)
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The investor’s wealth evolves according to the following stochastic differential equation

dVt = Vtwrf ,tdt+ wtVt(µdt+ σdZt − rfdt)− ctdt (16)

µ is the expected return, σ the stock market volatility and Zt ∼ N(0, 1) is distributed

normally. The investor’s wealth must be non-negative any time, Wt ≥ 0,∀t. Then the

risky asset’s return rw,t is

rw,t = µdt+ σdZt (17)

Assuming constant relative risk aversion utility with risk parameter ρ

u(ct) =
c1−ρt

1− ρ
(18)

the optimal allocation wt(V, t) to the risky asset can be shown to be time and wealth

invariant

wt(V, t) =
1

ρ

µ− rf
σ2

(19)

Furthermore, the optimal consumption rate is also constant and dependent on the

investor’s portfolio’s value at time t and his time preference rate δ

ct = δVt (20)

Transforming the problem into discrete time and assuming T →∞ the maximization

problem becomes

max
w,ct

u(V0) = E

[
∞∑
t=0

1

(1 + δ)t
u(ct)

]
(21)

The optimization is subject to the wealth constraint where I assume a constant alloca-

tion to the risky asset of w, hence a constant allocation to the riskless asset wrf ,t = 1−w

Vt = Vt−1 ((1 + rw,t)w + (1 + rf )(1− w))− ct (22)

where rw,t denotes the return of the risky asset from time t − 1 to t. This is time

consistent to the investor’s portfolio wealth Vt−1 at time t − 1. Moreover, define V ∗t−1 to

be the wealth after considering the return from the risky and riskless asset but before

consumption

V ∗t−1 = (1 + rw,t)w + (1 + rf )(1− w) (23)
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Assume furthermore ρ = 1 and therefore u(ct) = log(ct) and that consumption is a

constant fraction of the investor’s portfolio’s wealth and his time preference rate as shown

by Merton

ct = V ∗t−1δ (24)

Hence

Vt = V ∗t−1(1− δ) (25)

Since ct = V ∗t−1δ is a constant fraction of wealth the maximization is similar to opti-

mizing Vt and its sample analog is

max
w

u(V0) = E

[
∞∑
t=0

1

(1 + δ)t
u(Vt)

]
= max

w

1

N

N∑
n=1

[
∞∑
t=0

1

(1 + δ)t
u(Vt)

]
(26)

For example consider a 100 year period with 50 observations per year and 100 draws

and µ = 0.05, σ = 0.1, ρ = 1 ↔ u(Vt) = log(Vt), r = 0.043. This corresponds to a

theoretical optimal allocation to the risky asset of w = µ−r
ρσ2 = 0.7.

The simulation analog where I optimize for w with the GMM methodology corresponds

to 0.689 (≈ 0.7) with a standard error of 0.181, a t-value of 3.812, and a p-value of < 0.001

(test for ŵ 6= 0), hence the GMM methodology works. This holds for various as long as

feasible parameter combinations and is also stable with respect to the starting value of w.

4.2 Campbell and Viceira (1999)

A more sophisticated approach is discussed by Campbell and Viceira (1999). The infinitely

lived investor with Epstein-Zin-Weil utility wants to maximize his consumption and faces

a time-varying equity premium and a constant riskless interest rate. His optimization

problem is

u(ctEtut+1) =
(

(1− δ)c(1−ρ)/θt + δ(Etu1−ρt+1 )1/θ
)θ/(1−ρ)

(27)

where δ is the time preference or discount factor, θ = 1−ρ
1−ψ−1 , ψ−1 the elasticity of

intertemporal substitution, and ρ the coefficient of relative risk aversion. The investor’s

one period portfolio return rp,t+1 from time t to t+ 1 is defined as

rp,t+1 = wt(rw,t+1 − rf ) + rf (28)

with wt the allocation to the risky asset at time t with one period return rw,t+1 when

invested at time t and held through t+1, rf the constant risk free rate, rp,t+1 the portfolio
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return from t to t+ 1, Rt+1 = log(rt+1), and Rf = log(rf ).

There exists one risk factor which follows an autoregressive process of order one

xt+1 = µ+ φ(xt − µ) + ηt+1 (29)

where ηt+1 ∼ N(0, σ2
η) is normally distributed with variance σ2

η. The expected return

of the risky asset is related to the risk factor

EtRt+1 = xt +Rf (30)

The unexpected return of the risky asset is

Rt+1 = xt +Rf + ut+1 (31)

where ut+1 ∼ N(0, σ2
u) is normally distributed with variance σ2

u. The covariance

between the shocks to the risk factor and the unexpected return is cov(ut+1, ηt+1) = σuη.

As shown by Campbell and Viceira (1999) the allocation to the risky asset wt is

dependent on two constants, a0, a1, and the risk factor xt. Similarly the log-consumption-

wealth ratio, ct − vt, is also dependent on the risk factor xt and on three constants b0, b1,

and b2, where Ct = log(ct), Vt = log(vt)

wt = a0 + a1xt (32)

ct − vt = b0 + b1xt + b2x
2
t (33)

Assume that b0, b1, b2, and the functional form of ct − vt and wt are known. Then a0

and a1 need to be estimated to determine

wt = w̄t + â0 + â1xt (34)

where w̄t is some benchmark weight and â0 and â1 are the estimates of a0 and a1.

This is exactly the formulation of the parametric approach for the asset class weights

as presented above. Furthermore assume that ψ−1 = ρ such that the Epstein-Zin-Weil

utility reduces to the standard time-separable power utility with relative risk aversion.

The sample analog for estimation is then

max
a0,a1

u(c) = E

[
∞∑
t=0

1

(1 + δ)t

(
c1−ρt

1− ρ

)]
= max

a0,a1

1

N

N∑
n=1

[
∞∑
t=0

1

(1 + δ)t

(
c1−ρt

1− ρ

)]
(35)
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The parameters used can be found in a working paper by Campbell and Viceira (1996)

which is a more detailed version of Campbell and Viceira (1999) and correspond to the

annual model 1890-1993 with ρ = 4 = ψ−1, δ = 0.94, φ = 0.798, µ = 4.165E − 2, σ2
η =

0.096E − 2, σ2
u = 3.319E − 2, σuη = −0.388E − 2, Rf = 1.992E − 2, b0 = −2.995, b1 =

1.249, b2 = 9.62 for a total of 500 draws with 100 observations each. Another 100 observa-

tions are discarded and used only for starting values due to the autoregressive formulation.

There are a couple of observations worth discussing.

• w̄t = 0. If the benchmark weight is ignored â0 = 0.282 ≈ a0 = 0.301 and â1 =

10.7 ≈ a1 = 9.7. The estimated coefficients are highly significant with p-values of 0

as expected. The variation can be explained with the random components in u and

η as compared to the analytic solution by Campbell and Viceira.

• w̄t = wCVt . If the benchmark weight is the optimal solution as provided â0 6= a0 and

â1 6= a1. â0 is insignificant at the 1% level and â1 is insignificant at the 5% level as

expected.

• w̄t = wCV optt . If the benchmark weight is the newly calculated optimal solution

â0 6= a0 and â1 6= a1, and both are insignificant as expected. For calculating a0 and

a1 in the formulation of Campbell and Viceira (1999) σ2
η, σ

2
u and σuη are required.

These parameters are prone to subtle but significant variation due to generating

random u and η. The model a0 and a1 are therefore not absolutely robust to some

variation - at least when b0, b1, and b2 are not updated accordingly.

• w̄t = c. If the benchmark weight is any arbitrary constant, â0 and â1 are both

significant as expected.

• w̄t = mean(wCVt ) or w̄t = mean(wCV optt ). If the benchmark weight is equal to the

mean of the optimal weights as provided or newly calculated â0 and â1 are both

significant as expected.

Moreover, the results are stable with respect to input parameters to the optimization

procedure. Therefore I conclude that the parametric approach is appropriate to be applied

to the asset allocation problem.

5 Data

A fundamental problem to analyze asset allocation based on macroeconomic data is the

lack of long time data series. This problem does not only relate to macroeconomic data

but also to return series where large sample data is usually only available for the price
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index but not the total return index. Therefore I restrict the analysis to US markets which

I take as proxy for the global allocation to stocks and bonds. The studies of Oertmann

(1997) and Oertmann and Seiler (2010) serve as basis on the choice of the risk factors.

Data is available from June 1964 and is split up into an in sample period, which lasts

from June 1964 to December 2008, and into an out of sample period from January 2009 to

December 2011. This corresponds to 570 end-of-month observations. The forecast period

is one month. t refers to the last trading day of the month and the return period t + 1

refers to an investment into an asset class at t held until the end of next month, t+ 1.

The risk free rate rf,t+1 is the monthly equivalent to the annualized three month US

government constant maturity rate as provided by Bloomberg. It would be more appro-

priate to take the one month US government constant maturity rate, however, this data

series is only available starting in July 2001. The difference between the two annualized

series is negligible with a mean in the difference of 0.06 %, a maximum difference of 0.33

% in November 2007, a standard deviation of the difference of 0.01 % and a correlation

of 0.998. The risk free rate is the percentage return from t to t+ 1 and is known at t.

The total return series are taken from CRSP data base. For stocks (rs,t+1) this is

the total return series of the value weighted CRSP stock market indexes (NYSE, AMEX,

NASDAQ and ARCA). For bonds (rb,t+1) I take the total return series of the CRSP US

government bonds series with maturities 60 to 120 months. The total return series are

the percentage rates from t to t+ 1, hence monthly returns, but these are only known at

t+ 1.

Linking the financial asset allocation decision to macroeconomic variables is a chal-

lenging task as there is a great variety of potential variables to choose from. However,

there are some criteria which limit the selection: (1) data should be available for a long

time series, (2) data frequency should be at least monthly, (3) there should be a limited

risk to significant post-release data revisions as for example with GDP, (4) the variables

should have been discussed in the literature, and (5) the link between the variables and

financial asset class returns should be intuitive.

These requirements are fulfilled for the term spread, credit spread and ted spread.

Additionally I add common value parameters for stocks. All variables are discussed in

Oertmann (1997) and Oertmann and Seiler (2010). In the following paragraphs I outline

these variables and give a brief motivation for considering them in the model and an

intuitive link to financial asset returns.

The term spread (term) is the difference between the 10 year and 3 month US gov-

ernment bond yield. The end-of-month-data are monthly averages of daily Bloomberg

rates. A high and positive term spread or equivalently a steep interest curve is usually

associated with an economy before the peak of its business cycle. This is the time when
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business activity grows strongest. As the business cycle matures the central bank raises

target rates to limit the risk of inflation. In this way the term spread can be interpreted

as indicator for the economic activity. Investors allocate their funds towards risky assets

when they expect the economic activity to rise.

Another argument to invest into risky assets and specifically stocks is when trust into

companies is high. The credit spread (credit) serves as a measure of trust and is the

difference between corporate bonds with a rating of BAA and AAA (Moody’s rating).

The data is taken from CRSP and are monthly averages of the daily rates.

Risky assets get unattractive when the financial system is regarded unstable. This is

measured by the ted spread (ted) which is the difference between the monthly averages

of the three month interbank rate and the three month US government rate. Usually the

USD Libor rate is taken as interbank rate. A drawback to this definition is that the Libor

rate only starts in 1986. An alternative is the Eurodollar rate, which is available from

1971. To take advantage of a longer time series I rely on the three month certificate of

deposit secondary market rate. The ted spread with the certificate of deposit rate is on

average 0.11 basis points lower than the usual ted spread definition with the Libor rate.

The standard deviation of this difference is 0.09. The reason for the lower rate is that

certificate of deposits are insured by the Federal Deposit Insurance Corporation (FDIC)

for banks and by the National Credit Union Administration (NCUA) for credit unions

(Wikipedia, 2012). However, the correlation between the Libor ted spread and certificate

of deposit ted spread is very high: 0.974 for the whole time series and even higher during

the financial crisis 2008. This is reason enough to consider the ted spread definition with

the certificate of deposit rate. The rate is taken from the Federal Reserve Economic Data

(FRED) provided by the FED St. Louis.

Another argument to invest into risky assets and especially stocks is when they are

cheap relative to their value. Two prominent value measures are the price earnings ratio

(PE) and the dividend yield (DY). The dividend yield is the 12 month rolling difference

known at t between the CRSP Stock Market Indexes including all distributions and the

CRSP Stock Market Indexes excluding dividends. The price earnings ratio is the Shiller

price earnings ratio downloaded from Mr. Shiller’s website1. This price earnings ratio is

measured for the S&P 500 and is taken as proxy for the CRSP stock universe. To ensure

that the ratio is known at the end of the current month the price earnings ratio of the

previous month is taken.

As discussed in section 2 the weight of the asset class could potentially depend on

the asset class’ past returns. Therefore I add a measure of past returns to the estimation

defined as the difference between the return of the previous and the pre-previous period:

1http://www.econ.yale.edu/∼shiller/data/ie data.xls
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(ri,(t+1)−1−ri,(t+1)−2)×100. Differently to the risk factors explained above the past returns

are only considered for the relevant asset class, i.e. the past return of the asset class stocks

(Ms) is only relevant for stocks, not for bonds, and vice versa in the case of bonds (Mb).

This variable can also be interpreted as measuring a variant of momentum. However,

the definition and application of momentum is different in this study compared to the

literature. For example, in Asness, Moskowitz and Pedersen (2013) momentum is defined

as the past 12-month cumulative raw return on the asset class skipping the last month’s

return. I will discuss both variants of momentum further down in section 6. Furthermore

a constant for stocks cs and bonds cb added to the model.

Table 5 in Appendix A shows statistics of the data in and out of sample which shows

significant differences between most variables.

6 Results

To discuss the performance of the model I compare it with a standard 60/40 portfolio

strategy, i.e. a portfolio where 60% of the funds are held in stocks and 40% are held in

bonds. These are also the benchmark weights w̄i,t for stocks and bonds in equation 3.

Table 1 shows the mean results of various models with different combinations of inter-

cept and past return added to the model or not, the dividend yield or Shiller PE or both

and risk aversion parameters 1, 2, 5, 10, 15, and 20.

It is notable that the strategy outperforms the benchmark in terms of most parameters

not only in sample but also out of sample. The Sharpe Ratio is almost constant across

different values of risk aversion and is in sample 0.20 vs. 0.09 for the benchmark. Out of

sample (0.60) the Sharpe Ratio is still almost double the Sharpe Ratio of the benchmark

(0.38) and as well virtually constant across different levels of risk aversion. As the Sharpe

Ratio measures the return relatively to the risk taken it is not surprising that the Ratio

is independent of the risk aversion. The lower the risk aversion ρ the more risk is taken

(σr) but also the expected return (r̄) increases.

Although Jensen’s Alpha is not fully appropriate to be used in an asset allocation

context I report it in this study as it is widely regarded by practitioners. Jensen’s Alpha

measured relatively to the benchmark is significantly different from zero for the in sample

period and is negatively correlated to the risk aversion. The same is true for the out of

sample period where Jensen’s Alpha is even larger. I calculate two versions of Jensen’s

Alpha out of sample: one where β is calculated in sample (βi) and one where β is calculated

out of sample (βo). Jensen’s Alpha is always significant out of sample unless a model

specification with the dividend yield and without past returns is considered. In some

rare cases Jensen’s Alpha is insignificant when risk aversion is high. There is a notable
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In sample June 1964 - December 2008
SR r̄ σr α % Cert. Equ.

ρ s bm s bm s bm βi s bm
1 0.20 0.09 7.3 0.7 31.0 2.9 s6.05 4.00 0.70
2 0.21 0.09 3.8 0.7 15.2 2.9 s2.85 2.08 0.65
5 0.21 0.09 1.8 0.7 6.2 2.9 s1.14 1.08 0.52

10 0.21 0.09 1.1 0.7 3.1 2.9 s0.57 0.76 0.29
15 0.19 0.09 0.9 0.7 2.1 2.9 s0.36 0.63 0.05
20 0.19 0.09 0.8 0.7 1.6 2.9 s0.27 0.57 -0.22

Out of sample January 2009 - December 2011
SR r̄ σr α % Cert. Equ.

ρ s bm s bm s bm βi βo s bm
1 0.55 0.38 12.2 1.2 22.6 3.1 s8.81 s8.80 9.90 1.14
2 0.65 0.38 8.5 1.2 13.2 3.1 s6.48 s5.14 6.88 1.09
5 0.61 0.38 3.1 1.2 5.0 3.1 s2.23 s1.77 2.46 0.95

10 0.62 0.38 1.6 1.2 2.6 3.1 s1.27 s0.92 1.29 0.70
15 0.58 0.38 1.0 1.2 1.7 3.1 s0.68 s0.52 0.76 0.46
20 0.58 0.38 0.8 1.2 1.4 3.1 s0.53 s0.39 0.57 0.21

Table 1: Average results of various parameter and risk aversion combinations. SR =
Sharpe Ratio, r̄ = mean return, σr = the standard deviation of the return, Cert. Equ. =
Certainty Equivalent, s = strategy, bm = benchmark, ρ = risk aversion parameter, α %
= Jensen’s Alpha in % relative to the benchmark with β calculated in sample (βi) or out
of sample (βo).

s denotes a Jensen’s Alpha significantly different from 0 with a p-value of
≤ 0.05. Values are monthly.

difference between Jensen’s Alpha with βi and βo where the first is always larger compared

to Jensen’s Alpha with βo. Note, that βo is just known after the last realization of the out

of sample period. This shows that there is a difference between the historically expected

and realized Jensen’s Alpha.

The certainty equivalent expresses a risk free rate of return such that an investor

values this return equivalently to the expected utility of the return rp of a risky portfolio:

u(C) = Eu(rp), where C is the certainty equivalent. As expected the certainty equivalent

is higher when ρ is small as the investor is ready to take more risk for a higher return.

Moreover, the certainty equivalent of the strategy presented is always larger than the

certainty equivalent of the benchmark - in sample and out of sample. Thus an investor

requires a higher risk free rate in exchange to the strategy compared to the benchmark.

With ρ = 20 the certainty equivalent is even negative for the benchmark in sample, hence

a risk averse investor would tend not to follow the 60/40 strategy.

Table 2 shows the results of five selected models for a risk aversion level of 5 and 10.

(1) The first model includes all variables (F), (2) the second model is similar to the full

model apart from the constant excluded (A). (3) The next is a value model (V) with DY
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and PE as coefficients. The credit spread (credit) is dropped from the estimation as the

coefficient is insignificant with DY and PE. (4) The fourth model considers past returns

(C) and (5) the last model (M) is the same as C without the credit spread. In general the

coefficients lose their significance when asset class specific coefficients (cs, cb) are allowed

as can be seen when comparing models F with models A, V, C, and M.

As discussed above a measure for past return was added due to the formulation of

the problem. However, the past return variable or momentum for stocks (Ms) is only

significant if the dividend yield (DY) is used as value parameter. If an intercept (cs and

cb) is taken into account Ms and Mb are always insignificant with cb significant (model

F). If cs and cb are considered without past returns only cs is significant with DY as value

variable and ρ > 10. cs and cb add overall little value to the model regardless of the

specification. Therefore I will not consider cs and cb more detailed. I will first discuss the

coefficients of stocks before analyzing the coefficients of bonds.

Regarding stocks the term spread (term) is always insignificant and the credit spread

(credit) is only significant in model C when DY is included into the model and when

ρ > 10 which is not shown in the table. The sign of the coefficient of credit is always

negative when significant. This is intuitive: the lower the spread the higher the trust into

companies and the more attractive are stocks.

The ted spread (ted) is significant regardless of the model specification and consistently

negative, hence a high ted spread is associated with a low allocation to stocks. When

the financial system is regarded unstable risk aversion picks up and risky investments as

stocks get unattractive.

Surprisingly the value factors dividend yield (DY) and the Shiller price earnings ratio

(PE) depend on ρ: PE tends to be significant when ρ > 5 and the DY tends to be

significant when ρ < 5 (models A and V). The sign of the coefficient is as expected: DY

is positive, hence the higher the dividend yield the higher the expected return of stocks.

PE is negative, i.e. the lower the price earnings ratio the better for stocks, hence go long

stocks when they are cheap.

Also the significance of Ms depends partly on ρ which tends to be generally significant

when ρ < 5 or ρ > 10 unless an intercept is taken into account. When credit is included

into the model (C) Ms is always significant. Note that values for ρ < 5 and ρ > 10 are not

reported in the table. These results are weaker compared to the literature discussing value

and momentum as for example Asness, Moskowitz and Pedersen (2013). Results do not

change by a large factor in terms of performance when applying a standard momentum

definition, i.e. the past 12-month cumulative raw return on the asset class skipping the last

month’s return. Interestingly, the momentum coefficients are then insignificant but the

momentum variable on stock gets significant when considering transaction costs. However,
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the model is still clearly outperformed by the value model (V). Note that especially

momentum is usually discussed in a strategy context, i.e. going long highly positive

momentum assets and short highly negative momentum assets within an asset class. In

this respect momentum is used differently compared to this study. Moreover, the purpose

of considering momentum - or better past returns - in this paper is more of a technical

nature.

Overall the allocation to bonds seems to be better predictable with respect to signifi-

cance of the parameters. The term spread (term) is significant and consistently positive

apart from the full model (F). The sign of the coefficient leaves room for interpretation:

(1) The bond universe are long term US treasury bonds of maturities between 60 and

120 months. Long term bonds get usually more attractive when long term interest rates

are high relative to short term interest rates and are not expected to rise further. (2) As

short term interest rates are low this effect eventually feeds back to the long end, bringing

down yields and increasing the total return for long term bond investors.

Different to the term spread the credit spread (credit) is always insignificant. The

third macroeconomic variable ted spread (ted) is significant and positive for models V, C

and M. As a measure of risk in the financial system this is intuitive: investors flee into

US Treasuries.

Of the two value variables DY and PE only DY is of statistical relevance for bonds.

The sign is negative and can be interpreted as relative attractiveness to invest into stocks.

Unlike the past returns of stocks Ms, the past return variable for bonds Mb is always

statistically significant unless an intercept is added to the model.

Table 3 shows detailed results of the models F, A, V, C and M for the in sample and

out of sample periods. In sample there is not much difference between the models in terms

of Sharpe Ratio. The mean return r̄ is higher with models F, A, C, and M relative to V in

sample, however also the risk borne (σr). Jensen’s Alpha is always significantly positive.

Models C and M outperform models F, A, and V with respect to Jensen’s Alpha and the

certainty equivalent.

Out of sample all strategies perform well compared to the benchmark strategy with

M performing best compared to all models with respect to Sharpe Ratio and certainty

equivalent. Jensen’s Alpha is not significantly different from zero in case of model C with

βo and when ρ is large, however significant in all other cases. Model F clearly outperforms

the other models with respect to Jensen’s Alpha.

Because of the results discussed and the fact that credit is insignificant in the model

with ρ = 5 and ρ = 10 model M dominates C with respect to significance of coefficients

and parsimony. I will discuss a subtle drawback to strategy M over V further down

stemming from Ms and Mb.

16



stock bond
ρ term credit ted DY PE Ms cs term credit ted DY PE Mb cb

F

5 0.11 0.04 -0.59 0.17 -0.01 0.12 0.07 1.00 -0.05 1.23 -0.77 0.02 0.63 -0.18
* **

10 0.03 0.04 -0.34 0.05 -0.01 0.06 0.03 0.52 -0.08 0.63 -0.42 0.00 0.41 -0.09
** * * **

A

5 0.13 -0.04 -0.54 0.16 -0.01 0.07 1.12 -0.49 1.64 -0.71 0.05 0.36
* ** * **

10 0.04 -0.01 -0.32 0.05 -0.01 0.03 0.53 -0.22 0.76 -0.38 0.02 0.18
** ** ** **

V

5 0.10 -0.66 0.15 -0.01 1.04 2.39 -0.89 0.03
*** *** *** ***

10 0.03 -0.37 0.04 -0.01 0.51 1.16 -0.47 0.01
*** * *** *** ***

C

5 0.18 -0.59 -0.52 0.24 0.08 1.41 -0.67 2.65 -0.80 0.32
** * ** *** ** ** **

10 0.08 -0.40 -0.29 0.09 0.04 0.68 -0.22 1.27 -0.45 0.16
** ** *** ** ** **

M

5 0.03 -0.65 0.14 0.06 1.24 2.09 -0.85 0.33
*** * *** ** *** **

10 -0.02 -0.39 0.02 0.03 0.62 1.04 -0.46 0.17
*** *** ** *** **

Table 2: Selection of test results. Full model (F), full model without constant (A), value
(V), credit & momentum (C) and momentum (M). ρ = risk aversion parameter. *, **
and *** relate to a p-value of ≤ 0.10,≤ 0.05 and ≤ 0.01. No star relates to insignificant
coefficients.

As there are not yet leverage constraints in place the only limitation to leverage stems

implicitly from ρ. The higher ρ the smaller the magnitude of the coefficients and the lower

the weights to the risky asset classes as can be seen in table 2 and table 6 in Appendix

A respectively. Thus the weights can get very large when ρ is small: With ρ = 5 the

allocation to bonds reaches a maximum of 12 times the equity of the fund (100%). The

average allocation to bonds is more reasonable with 70% to 110% of equity depending

on which model is considered (table 6, Appendix A). Interestingly the out of sample

allocation to stocks and bonds is well above the in sample allocation. Thus an investor

following the strategy would have invested aggressively during this time which was ex

post the right decision.

Figure 1 in Appendix A shows the asset allocation to stocks (black) and bonds (blue)

for the in sample and out of sample period of the value strategy V for risk aversions ρ = 5

and ρ = 10. The beginning of the out of sample period is highlighted by a vertical red

line. The horizontal green lines define 0% (no allocation) and 100% (full allocation of

equity). If the allocation of all asset classes is in sum above 100%, i.e. above the upper

horizontal green line the investor borrows money, if it is below the lower green line he is

in total short risky assets and invests these funds into the riskless asset. Obviously the

allocation into bonds has a higher volatility. Figure 1a shows the allocation when ρ = 5
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In sample June 1964 - December 2008
SR r̄ σr α % Cert. Equ.

ρ s bm s bm s bm βi s bm

F
5 0.24 0.09 2.0 0.7 6.3 2.9 s1.36 1.07 0.52

10 0.24 0.09 1.2 0.7 3.2 2.9 s0.69 0.76 0.29

A
5 0.24 0.09 2.1 0.7 6.5 2.9 s1.42 1.24 0.52

10 0.24 0.09 1.3 0.7 3.3 2.9 s0.70 0.83 0.29

V
5 0.20 0.09 1.8 0.7 6.5 2.9 s1.14 1.07 0.52

10 0.20 0.09 1.1 0.7 3.3 2.9 s0.57 0.76 0.29

C
5 0.23 0.09 2.2 0.7 7.6 2.9 s1.55 1.24 0.52

10 0.23 0.09 1.3 0.7 3.9 2.9 s0.77 0.83 0.29

M
5 0.23 0.09 2.1 0.7 7.1 2.9 s1.43 1.19 0.52

10 0.22 0.09 1.3 0.7 3.7 2.9 s0.71 0.80 0.29

Out of sample January 2009 - December 2011
SR r̄ σr α % Cert. Equ.

ρ s bm s bm s bm βi βo s bm

F
5 0.66 0.38 4.3 1.2 6.4 3.1 s3.50 s2.78 2.46 0.95

10 0.67 0.38 2.3 1.2 3.4 3.1 s1.88 s1.41 1.29 0.70

A
5 0.56 0.38 2.8 1.2 4.9 3.1 s2.75 s2.34 2.24 0.95

10 0.50 0.38 1.4 1.2 2.8 3.1 s1.44 s1.14 1.04 0.70

V
5 0.61 0.38 3.1 1.2 5.0 3.1 s1.95 s1.40 2.46 0.95

10 0.62 0.38 1.6 1.2 2.6 3.1 s1.06 s0.70 1.29 0.70

C
5 0.56 0.38 2.8 1.2 4.9 3.1 s2.31 s1.93 2.24 0.95

10 0.50 0.38 1.4 1.2 2.8 3.1 s1.17 0.93 1.04 0.70

M
5 0.70 0.38 3.2 1.2 4.6 3.1 s2.35 s1.98 2.75 0.95

10 0.69 0.38 1.8 1.2 2.5 3.1 s1.27 s1.01 1.47 0.70

Table 3: Detailed results of the models full (F), full model without constant (A), value (V),
credit & momentum (C) and momentum (M). SR = Sharpe Ratio, r̄ = mean return, σr
= the standard deviation of the return, Cert. Equ. = Certainty Equivalent, s = strategy,
bm = benchmark, ρ = risk aversion parameter, α % = Jensen’s Alpha in % relative to the
benchmark with β calculated in sample (βi) or out of sample (βo).

s denotes a Jensen’s
Alpha significantly different from 0 with a p-value ≤ 0.05. Values are monthly.
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and figure 1b shows the allocation when ρ = 10, respectively.

Figure 2 in Appendix A shows the asset allocation for strategy M again with ρ = 5

(figure 2a) and ρ = 10 (figure 2b). The largest drawback compared to strategy V is the

high volatility of the weights around a mean allocation not much different to the weights

in model V (figure 1). This is due to the past return variables Ms and Mb which are

defined as (ri,(t+1)−1− ri,(t+1)−2)×100 and are by definition volatile: The mean of Ms and

Mb is in sample roughly 0, the standard deviation is, however, 6.06 and 2.44 respectively

(table 5, Appendix A). This ratio is large, much higher than for any other series.

Both, extreme weights and the tendency of the model to reallocate the portfolio often

and by a large factor can be handled when including transaction or leverage costs without

a large loss in performance. I will discuss this extension to the basic model in section 7.

Noteworthy there is a link between an economic crisis associated with a stock market

crisis and the allocation to stocks: During the difficult economy and stock market period

around and after the oil crisis in the 70s, the savings and loan crisis 1981, the Latin

American debt crisis 1982, the excess at the end of the 1990s, the dot-com bubble and

the financial crisis (partly out of sample) the allocation to stocks was low compared to

other times.

7 Transaction and Leverage costs

One of the main drawbacks to the approach are the extreme weights and the tendency

of the model to reallocate the portfolio often and by a large factor which makes an

application challenging. No investor with risk aversion 5 applying model V or model M

would reallocate 67% or even 168% respectively, of his portfolio on average every month.

Neither would an average investor have the opportunity to lever his portfolio by a factor

of 10 or even higher. However, this can be handled when including transaction costs or

leverage costs.

Methodologically transaction and leverage costs are straight forward to include into

the model. In case of asset class specific transaction costs ci the absolute difference in

weights need to be considered each period. Moreover, due to the change of security prices

also the portfolio share might increase or decrease. If the allocation into asset i is held,

the allocation to asset i at time t when allocating wi,t−1 at t− 1 is whi,t = wi,t−1(1 + ri,t),

where whi,t denotes the (t − 1) to t buy and hold allocation at t for asset i. Hence, the

portfolio return rp,t+1 in equation 8 changes to

max
θi

1

T

T−1∑
t=0

[u(rp,t+1)] =
T−1∑
t=0

[
u

(
N∑
i=1

wi,tri,t+1 + wrf ,trf,t+1 − ci|wi,t − whi,t|

)]
(36)
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Similar to transaction costs leverage costs s can be considered. This premium needs to

be paid on top of the risk free rate. Therefore the lending and borrowing rate is different.

To model transaction costs I use an indicator function: Is = 1 if
∑N

i=1wi,t > 1 and Is = 0

else.

max
θi

1

T

T−1∑
t=0

[u(rp,t+1)] =
T−1∑
t=0

[
u

(
N∑
i=1

wi,tri,t+1 + wrf ,trf,t+1 − Iss

(
N∑
i=1

wi,t − 1

))]
(37)

Both approaches generate kinks in the first order conditions and the covariance matrix.

However, as the asymptotic covariance matrix is calculated numerically the adaption of

transaction and leverage costs is without risk for calculating significant values. Still, the

kink in the first order condition can be challenging for the optimization procedure of the

GMM algorithm. This is indeed the case for model M, where the optimization procedure

fails when transaction costs get large. This is due to the large variation of the factors

Ms and Mb. As expected the coefficients of Ms and Mb are close to 0 and insignificant

when including transaction costs. The strategy outperforms the benchmark significantly

in sample and out of sample and the average monthly reallocation reduces to 12% for

stocks and to 64% for bonds when one way costs ci = 0.3% and when risk aversion is 5.

This compares to an average monthly reallocation of 52% for stocks and 116% for bonds

when ci = 0%. However, when ci > 0.3% the optimization qualitatively fails: Ms turns

significant and both, Ms and Mb get large and the benchmark quickly outperforms the

strategy.

Nonetheless, as there is qualitatively enough evidence that Ms and Mb turn insignifi-

cant when transaction costs are considered model V quickly outperforms model M. Recall

that model V does not include Ms and Mb. Results for model V are very encouraging.

The strategy outperforms the benchmark in sample and out of sample clearly and in

terms of all performance measures. The Sharpe Ratio is even unchanged out of sample

at around 0.56, regardless of the size of transaction costs. The allocation process is much

smoother: The average reallocation in bonds shrinks from 55% when ci = 0% to 27%

when ci = 0.5% and 11% when ci = 1.0%. The average reallocation in stocks remains

constant around 11% which is not surprising, as the allocation to stocks was comparably

smooth from the beginning. With higher transaction costs some coefficients of the asset

class bonds get insignificant as the magnitude of coefficients get smaller. This does not

necessarily mean that the connection between the risk factors and the asset allocation is

lost but it is rather a result of the optimization. This conclusion also follows from the

observation that the mean return stemming from the asset class bonds is not reduced by a

large factor when including transaction costs. Only the standard deviation of the returns
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of bonds reduces substantially as transaction costs get larger.

The results clearly speak for themselves and are reported in detail in table 7 in ap-

pendix A for strategy V for different levels of ci and risk aversion 5 and 10. Moreover,

figure 8 in appendix A shows the effect to the asset allocation over time when including

transaction costs.

When considering leverage costs the kink in the optimization is no problem: With

higher leverage costs Ms and Mb get insignificant in model M quickly and the magnitude

of coefficients reduces as well. This leads to an overall allocation to stocks and bonds of

less or around 100% of the portfolio size. Leverage costs also cause the portfolio’s average

monthly reallocation to decrease. When s = 5% and risk aversion is 5 the average

reallocation for stocks is 20% and for bonds 29%. Model M outperforms the benchmark

in sample over all tested levels of transaction costs (up to 5%) and out of sample in terms

of the Sharpe Ratio up to s = 2%. Jensens’s Alpha gets insignificant when s ≥ 1% but

is still positive and comparably large: When s = 1% Jensen’s Alpha is 0.64 and when

s = 5% Jensen’s Alpha is 0.30.

Again, model V outperforms model M clearly when considering leverage costs. The

Sharpe Ratio is in sample almost constant regardless of the size of s and is around 0.45 out

of sample although leverage gets quickly unattractive. Jensen’s Alpha is always significant

even when s = 5%. Similar to model M the average mean reallocation of stocks and bonds

reduces substantially: from 12% when s = 0% to 8% when s = 1% and 6% when s = 5%

for stocks and from 55% when s = 0% to 12% when s = 1% and 9% when s = 5% for

bonds. The coefficients shrink in magnitude as s rises and turn insignificant. However

the mean performance attribution from stocks and bonds remains constant, only the

return variations are reduced in both asset classes. This leads to the same argument

as above: The risk factors are still relevant to the asset allocation process, even if they

“lose” significance. Detailed results are provided in table 8 in appendix A for strategy

V for different levels of s and risk aversion 5 and 10. Figure 9 in appendix A shows the

effect to the asset allocation when including leverage costs.

8 Robustness

It is convincing that the model performs well out of sample. Another question is whether

the model is robust when altering the in sample period. This also answers the question

whether a short in sample period would suffice, hence it would be better to adjust the

model according to the current economy. Alternatively a large data sample is more

important which would hint on persistent rules on how the economy is linked to the

finance world.
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For this I investigate models V and M discussed above. For model V, figure 3 in

Appendix A shows the different coefficients (3a) and significance of these (3b) for different

in sample periods. The x axis denotes the year on which the in sample period ends. The

first observation in sample is June 1964 and the last month is November of the shown

year, the first month of the out of sample period is December and the out of sample period

lasts for 12 months.

Figure 3a Appendix A shows that the coefficients can be considered to be time stable

with at least 20 years of in sample data (1984). This relates to 12 × 20 = 240 monthly

observations or 30 observations for each of the 8 coefficients. There is a shift in the

magnitude of coefficients around the financial crisis, which has, however, limited impact

on returns and other measures of model fitness and does not challenge the stability of the

method.

Moreover, it takes more than 30 years (1996) for the ted spread to get significant at

a 5% level as can be seen from figure 3b. The other significant variables of model V

are again significant with around 20 years of data. Risk factors which are not significant

(table 2) are also not significant independent of the in sample period length. However,

the p-values in figure 3b vary substantially for these variables, though whether the risk

factor is insignificant with a p-value of 0.2 or 0.8 does not change the conclusion.

Similar to model V also the coefficients of model M require around 20 years of data

to converge to stable values (figure 4a, Appendix A). Again, there is a slight shift of the

coefficients around the financial crisis. For variables Ms (p-value < 10%) and especially

Mb (p-value < 5%) a long time series is required to achieve the significance values as

reported in table 2 (figure 4b, Appendix A). Results are only shown beginning in 1984.

The first in sample month is again June 1964 and the last in sample month is December

2010.

Another test on the robustness is to consider a rolling in sample window and verify

whether the coefficients and significance values are stable. For this I run a rolling re-

gressions with a 30-year-in-sample-window. Results are shown in figure 5 in Appendix

A. Although the coefficients are considerably stable, the shift in the magnitude of coeffi-

cients around the financial crisis of 2008 is more pronounced compared to the extending

in sample period shown in figure 4. A larger change can be seen when looking at figure

5b in Appendix A which shows the significance of the coefficients. Mb is only significant

at a 10% level in 2008 and 2009. Ms is significant at a 10% level during a number of years

but not consistent. Moreover, the ted spread turns out to be insignificant for the years

ending 2004 until 2007.

Considering the mean (µs) and standard deviation (σs) of measures of model of fitness

of model M when extending the in sample period (figure 4), the Sharpe Ratio is very
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SR r̄ σr α % Cert. Equ.
s bm s bm s bm βi βo s bm

20.5-29.5
µ 0.16 0.22 1.3 1.0 5.8 2.8 0.45 0.09 0.29 0.79
σ 0.23 0.27 1.2 0.7 2.5 1.1 1.32 1.49 1.35 0.74

30.5-39.5
µ 0.28 0.34 1.5 0.9 4.5 2.6 0.71 0.42 0.98 0.68
σ 0.33 0.57 1.5 1.0 1.3 0.9 1.03 0.84 1.58 1.03

40.5-46.5
µ 0.52 0.18 3.5 0.5 8.1 2.6 3.16 2.56 1.36 0.71
σ 0.24 0.35 3.4 1.2 12.0 1.1 4.35 3.36 1.99 0.49

Table 4: Results of the one year out of sample performance of model momentum (M)
with added in sample data and ρ = 5. Shown are the mean (µ) values of the performance
measures for in sample periods 20.5-29.5 years (2), 30.5-39.5 years (3) and 40.5-46.5 years
(4) and the associated σ. SR = Sharpe Ratio, r̄ = mean return, σr = the standard devi-
ation of the return, Cert. Equ. = Certainty Equivalent, s = strategy, bm = benchmark,
ρ = risk aversion parameter, α % = Jensen’s Alpha in % relative to the benchmark with
β calculated in sample (βi) or out of sample (βo). Values are monthly.

stable (µs = 0.25, σs = 0.01 vs. benchmark µb = 0.10, σb = 0.02), the certainty equivalent

(µs = 1.29, σs = 0.08 vs. µb = 0.58, σb = 0.05), and Jensen’s Alpha (µs = 1.43, σs = 0.19)

are stable and converge as expected to the values as shown in table 3.

Table 4 shows a more detailed analysis for the out of sample periods where the first

out of sample period begins January 1985 and ends December 1985 and the last out of

sample period begins January 2011 and ends November 2011. There are three blocks:

20.5 to 29.5 years of in sample data, 30.5 to 39.5 years of in sample data, and 40.5 to

46.5 years of in sample data. The strategy does not outperform the benchmark out of

sample with respect to the Sharpe Ratio and the certainty equivalent in the window 20.5-

29.5, however Jensen’s Alpha is still positive and the strategy also beats it’s benchmark

with respect to return. For the window 30.5-39.5 only the Sharpe Ratio is slightly worse

than the benchmark, still the strategy outperforms with respect to return, Jensen’s Alpha

and the certainty equivalent. In the last window 40.5-46.5 the strategy outperforms the

benchmark clearly.

This can also be seen from figure 6 in Appendix A which shows the linked logarithmic

out of sample performance since 1985 of the strategy (black) and the benchmark (blue).

Within the first years the strategy does not outperform the benchmark and volatility is

comparably high. The performance of the strategy improves over time with a massive

spike in 2008 which results from a high allocation to bonds during the financial crisis.

Especially the last years show considerable outperformance relative to the benchmark.

Such a spike also occurs in 1982 along with the 2008 spike in model V.

Noteworthy, the out of sample performance of model M of the 30 year rolling in

sample strategy compared to the strategy which includes more and more in sample data
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is virtually similar (figure 7, Appendix A). Only after the financial crisis the 30 year

rolling in sample window slightly outperforms the strategy with more and more in sample

data added.

A more detailed analysis than changing the last in sample year is to change the last in

sample month. In fact, there is some variation in coefficients but not significance around

the second half of 2008. This is especially true for the ted spread coefficient for the asset

class bonds which can also be seen when examining the yearly change in coefficients in

figure 3a and figure 4a in Appendix A. This has some, however not sizeable impact on

returns and a limited effect on the model’s performance measure.

These observations are evidence enough to argue that a larger data sample adds value

to the model where in any case at least 30 years of data should be considered to ensure

stable coefficients.

9 Conclusion

Building up on Brandt, Santa-Clara and Valkanov (2009) I propose a novel approach to

solve an investor’s asset allocation problem. The investor maximizes his time separable

utility with choosing the right mix of asset classes. Different to other asset allocation

approaches not the returns, but the weights of the assets are driven by risk factors. I

focus on US stocks and long term US Treasury bonds as asset classes and the term

spread, credit spread and ted spread as global macro risk factors. Moreover, I consider

the dividend yield and Shiller’s Price Earnings ratio as global value factors as well as

asset class specific past returns which can be interpreted as momentum. The risk free

rate serves as residual to the allocation to bonds and stocks such that the weights sum

always up to 100%.

To verify the method I test the generalized method of moment estimator and the

parametric asset allocation approach on two well known models: Merton (1969) and

Campbell and Viceira (1999). As the moment conditions can not be estimated in a closed

form I use a numerical method for estimation. This induces the risk of getting stuck in

local maxima, i.e. different initial solutions result in different final solutions. To solve

this problem I suggest an iterative optimization procedure.

The results are very encouraging and the method works fine in sample and out of

sample. A standard 60/40 stock-bond-portfolio serves as benchmark. The benchmark is

greatly outperformed in terms of Sharpe Ratio and certainty equivalent. Jensen’s Alpha is

always significantly positive in sample. Only in some model specifications Jensen’s Alpha

tends to get insignificant out of sample especially when ρ is large but is significantly

positive else.
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Both, the coefficients and the performance measures are directly related to the risk

aversion coefficient ρ: The higher ρ the lower the magnitude of the coefficients, hence

the magnitude of the weights and the lower the mean of the return, standard deviation,

Jensen’s Alpha and certainty equivalent. The outperformance over the benchmark is

challenged but still present for levels of ρ as high as 20. The Sharpe Ratio does not vary

with ρ which is reasonable as it is a measure of how much risk was taken for the return

achieved.

Three models are discussed in more detail: a value model with the term spread, credit

spread, dividend yield and price earnings ratio; a moment model with the term spread,

credit spread, ted spread, dividend yield and the asset class specific momentum variable

and another moment model including the credit spread. The signs of the coefficients are

meaningful and intuitive.

Testing for robustness I verify that the coefficients converge to the values calculated.

For this I add yearly in sample data such that the in sample period gets larger each year.

The coefficients are stable with at least 20 years of data. With at least 30 years of data the

same holds true for the significance apart from the momentum variables which require a

longer time series to get significant. The financial crisis induces a shock to the estimation

of the coefficients in the second half of 2008 which is, however, of minor relevance to the

performance measures and the return series. I also compare the added-in-sample-strategy

to a 30-year-rolling in sample data window and find that the out of sample performance

is almost similar. In general there is enough evidence that a large data sample adds value

to the model, hence enduring rules link the economy to finance.

The major drawback to the strategy, excessive leverage and large allocation changes

each period, can conveniently be handled when including transaction or leverage costs.

In both cases the mean reallocation is quickly reduced without losing a lot of perfor-

mance. The value model clearly dominates all other models. In the case of leverage costs

the portfolio exposure quickly shrinks below or around 100%. This makes the strategy

applicable.

Possible extensions could be to add other asset classes as commodities, hedge funds or

private equity and non US stock and bonds to the model. The feasibility depends mainly

on the availability of economic and financial data which is limited for most regions, espe-

cially emerging markets and asset classes as hedge funds and private equity. Furthermore

the inclusion of other asset classes requires a well defined total return series. Another

interesting variation of the model is to focus on strategies as value or carry rather than

asset classes.

This model can add valuable objectivity to the tactical asset allocation process in

portfolio management. In this sense this model can not only contribute to a deeper
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understanding of the links between the economy and finance but also improve asset man-

agement.
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A Appendix

In sample June 1964 - December 2008
rf × 100 rs rb term credit ted DY PE Ms Mb

Min 0.003 -0.225 -0.074 -2.65 0.32 0.04 0.84 6.62 -20.66 -14.24
25% 0.336 -0.018 -0.003 0.33 0.74 0.27 2.33 11.63 -3.86 -1.35
Med 0.429 0.011 0.005 1.42 0.91 0.45 3.20 18.50 -0.27 0.01
µ 0.464 0.008 0.006 1.37 1.03 0.68 3.36 19.50 0.00 0.01
75% 0.585 0.038 0.015 2.49 1.23 0.86 4.31 24.59 3.70 1.23
Max 1.210 0.166 0.109 4.42 3.38 4.70 7.36 44.66 27.53 10.24
σ 0.216 0.045 0.018 1.28 0.45 0.63 1.36 8.69 6.06 2.44

Out of sample January 2009 - December 2011
rf × 100 rs rb term credit ted DY PE Ms Mb

Min -0.001 -0.100 -0.035 1.97 0.76 0.09 1.41 13.06 -12.02 -7.00
25% 0.004 -0.020 -0.004 2.60 0.99 0.15 2.16 18.07 -4.91 -1.57
Med 0.010 0.020 0.005 3.14 1.13 0.18 2.41 20.04 -2.74 0.21
µ 0.009 0.016 0.006 3.01 1.37 0.28 2.43 19.60 -0.08 -0.10
75% 0.013 0.060 0.019 3.40 1.34 0.31 2.61 21.84 2.86 1.42
Max 0.021 0.114 0.034 3.70 3.09 0.91 3.54 23.71 19.89 5.66
σ 0.005 0.055 0.016 0.50 0.66 0.22 0.52 2.98 7.95 2.60

Table 5: Statistical summary data

in sample out of sample
stock bond stock bond

ρ min µ max min µ max min µ max min µ max

F
5 -2,2 0,7 2,6 -4,5 1,0 9,5 -1,1 0,9 2,3 -1,2 2,8 5,3

10 -1,2 0,3 1,3 -2,3 0,5 4,8 -0,4 0,5 1,2 -0,6 1,5 2,7

A
5 -2,0 0,6 2,4 -4,8 1,1 8,7 -0,4 0,9 2,0 0,3 2,7 4,9

10 -1,1 0,3 1,2 -2,4 0,5 4,3 -0,1 0,5 1,0 0,2 1,4 2,4

V
5 -2,2 0,6 1,7 -3,5 1,1 12,0 0,3 0,8 1,2 1,7 2,7 4,4

10 -1,2 0,3 0,8 -1,8 0,5 5,9 0,2 0,5 0,6 0,9 1,3 2,2

C
5 -2,6 0,7 2,5 -4,9 0,8 11,5 -1,7 0,8 2,0 0,8 2,5 4,5

10 -1,5 0,4 1,3 -2,5 0,4 5,9 -1,0 0,4 1,1 0,4 1,4 2,5

M
5 -2,4 0,7 2,1 -4,9 0,7 10,6 -0,3 0,9 2,0 0,7 2,7 5,3

10 -1,3 0,4 1,0 -2,5 0,4 5,4 -0,1 0,5 1,0 0,4 1,4 2,8

Table 6: Weights of selected test results in 100%. Minimum (min), mean (µ) and maxi-
mum (max) weights for the models F, A, V, C and M with risk aversion ρ = 5 and ρ = 10
for stocks and bonds in and out of sample.
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(a) ρ = 5

(b) ρ = 10

Figure 1: Asset allocation of model V. Black = allocation to stocks, blue = allocation to
bonds. The red vertical line denotes the begin of the out of sample period. The lower
horizontal green line symbolizes no allocation (0%), the upper green line full allocation
of equity (100%) to the asset class. The gray shaded areas symbolize US recessions as
defined by the Federal Reserve Bank of St. Louis.
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(a) ρ = 5

(b) ρ = 10

Figure 2: Asset allocation of model M. Black = allocation to stocks, blue = allocation to
bonds. The red vertical line denotes the begin of the out of sample period. The lower
horizontal green line symbolizes no allocation (0%), the upper green line full allocation
of equity (100%) to the asset class. The gray shaded areas symbolize US recessions as
defined by the Federal Reserve Bank of St. Louis.
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(a) Coefficients

(b) Significance

Figure 3: Robustness of coefficients. Model V. The x axis denotes the year on which the
in sample period ends where the first month is June 1964 and the last month is November
of the year shown. Stocks: black = term, blue = ted, green = DY, red = PE. Bonds:
orange = term, gray = ted, brown = DY, pink = PE.
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(a) Coefficients

(b) Significance

Figure 4: Robustness of coefficients. Model M. The x axis denotes the year on which the
in sample period ends where the first month is June 1964 and the last month is December
of the year shown. Stocks: black = term, blue = ted, green = DY, red = Ms. Bonds:
orange = term, gray = ted, brown = DY, pink = Mb.
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(a) Coefficients

(b) Significance

Figure 5: Robustness of coefficients, 30 year rolling window. Model M. The x axis denotes
December of the year on which the in sample period ends. The first month is 30 years
before. Stocks: black = term, blue = ted, green = DY, red = Ms. Bonds: orange = term,
gray = ted, brown = DY, pink = Mb.
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Figure 6: Linked one year out of sample performance since 1985 of model M. Black =
strategy, blue = benchmark.

Figure 7: Comparison of the linked one year out of sample performance since January
1995 of strategy M. Black = 30 year rolling in sample window, red= in sample period
extended each year, blue = benchmark.
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(a) 0.5% one way transaction costs, ρ = 5

(b) 0.8% one way transaction costs, ρ = 5

Figure 8: Asset allocation of model V with risk aversion ρ = 5 and one way transaction
costs of 0.5% and 0.8%. Black = allocation to stocks, blue = allocation to bonds. The
red vertical line denotes the begin of the out of sample period. The lower horizontal green
line symbolizes no allocation (0%), the upper green line full allocation of equity (100%) to
the asset class. The gray shaded areas symbolize US recessions as defined by the Federal
Reserve Bank of St. Louis.
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(a) 0.3% leverage costs, ρ = 5

(b) 1.0% leverage costs, ρ = 5

Figure 9: Asset allocation of the model V with risk aversion ρ = 5 and leverage costs
of 0.3% and 1.0%. Black = allocation to stocks, blue = allocation to bonds. The red
vertical line denotes the begin of the out of sample period. The lower horizontal green
line symbolizes no allocation (0%), the upper green line full allocation of equity (100%) to
the asset class. The gray shaded areas symbolize US recessions as defined by the Federal
Reserve Bank of St. Louis.
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